【AI大模型】Dify 如何集成 Ollama,看完这一篇你就懂了!!

一、dify 集成Ollama的作用

  1. 本地化部署与隐私保护

    • 本地运行:通过集成 Ollama,Dify 可以在本地运行大型语言模型(LLM),无需依赖远程服务器。这不仅降低了对网络的依赖,还提高了数据处理的隐私性,特别适合对数据安全有较高要求的场景。

    • 自定义模型:用户可以通过 Ollama 的 Modelfile 自定义模型参数和行为,进一步提升模型的灵活性和适应性。

  2. 简化模型管理与部署

    • 模型管理:Ollama 提供了模型的下载、更新、删除等管理功能,简化了模型的部署流程。Dify 则通过直观的界面和工具,进一步降低了模型管理的复杂性。

    • 快速部署:Dify 支持多种模型(如 Llama3、Mistral 等),能够无缝集成来自多家推理提供商和自托管解决方案的模型。通过集成 Ollama,用户可以快速部署和使用这些模型,加速从原型开发到生产的过程。

二、具体操作

1. dify 首页点击头像,点击设置,找到 ollama 服务商

2. 确保 Ollama 是运行状态

浏览器输入:http://localhost:11434/ ,如显示如下,则是运行状态

3. 添加 Ollma 模型

点击「保存」则可在模型供应商找到已添加好的ollma 本地模型。

注意:

⚠️如果你使用docker部署Dify与Ollama,可能会遇到以下错误:

httpconnectionpool(host=127.0.0.1, port=11434): max retries exceeded with url:/cpi/chat (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f8562812c20>: fail to establish a new connection:\[Errno 111\] Connection refused'))

httpconnectionpool(host=localhost, port=11434): max retries exceeded with url:/cpi/chat (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f8562812c20>: fail to establish a new connection:\[Errno 111\] Connection refused'))

出现此错误的原因是无法从 docker 容器访问 Ollama 服务。localhost通常指的是容器本身,而不是主机或其他容器。要解决此问题,您需要将 Ollama 服务公开到网络。

4. dify 访问 ollma 报错 MAC 解决方案

在 dify 根目录下vim .env文件,如果没该文件则新建,如果有该文件则添加如下命令

OLLAMA_API_BASE=http://host.docker.internal:11434

记得重启 dify 服务,即可引入加载成功,如下所示

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### Dify平台部署Ollama模型教程 #### 本地部署Dify应用开发平台 为了成功部署Ollama模型至Dify平台,需先完成Dify的本地环境搭建。这一步骤涉及安装必要的依赖项以及配置运行所需的各项参数设置[^1]。 ```bash # 安装Dify所需组件 sudo apt-get update && sudo apt-get install -y \ curl \ git \ python3-pip \ build-essential \ libssl-dev \ libffi-dev \ python3-dev ``` #### 使用Ollama部署本地模型 接着,在本地环境中准备用于训练或推理的大规模语言模型实例——即Ollama模型文件及其配套资源包。确保这些资料放置于指定路径下以便后续集成操作能够顺利执行。 #### 在Dify中接入Ollama语言模型 通过特定接口将前述准备好的Ollama模型引入到已构建完毕的应用框架内。此过程可能涉及到API调用、数据传输协议设定等一系列技术细节处理工作。 当遇到`max retries exceeded with url`错误提示时,表明网络请求尝试次数超限未能获取预期响应。此时应核查目标服务器状态是否正常运作,并确认所提供的URL链接无误;另外还需关注防火墙策略等因素对通信造成的影响[^2]。 对于上述提及的服务端程序调整命令如下所示: ```bash # 更新服务配置并重新启动Ollama服务 sudo systemctl daemon-reload sudo systemctl restart ollama ``` #### 公网远程使用Dify 最后一步则是使整个应用程序支持来自外部互联网用户的访问需求。创建一个可被公网识别的有效入口地址,并采取措施保障该连接的安全性和稳定性。例如利用反向代理机制来隐藏实际物理位置信息的同时提供负载均衡功能等优化手段。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值