1. 功耗
我们的 CPU,一般都被叫作超大规模集成电路(Very-Large-Scale Integration,VLSI)。这些电路,实际上都是一个个晶体管组合而成的。CPU 在计算,其实就是让晶体管里面的“开关”不断地去“打开”和“关闭”,来组合完成各种运算和功能。
想要计算得快,一方面,我们要在 CPU 里,同样的面积里面,多放一些晶体管,也就是增加密度;另一方面,我们要让晶体管“打开”和“关闭”得更快一点,也就是提升主频。而这两者,都会增加功耗,带来耗电和散热的问题。
在 CPU 里面,能够放下的晶体管数量和晶体管的“开关”频率也都是有限的。一个 CPU 的功率,可以用这样一个公式来表示:
功耗 ~= 1/2 ×负载电容×电压的平方×开关频率×晶体管数量
那么,为了要提升性能,我们需要不断地增加晶体管数量。同样的面积下,我们想要多放一点晶体管,就要把晶体管造得小一点。这个就是平时我们所说的提升“制程”。从 28nm 到 7nm,相当于晶体管本身变成了原来的 1/4 大小。这个就相当于我们在工厂里,同样的活儿,我们要找瘦小一点的工人,这样一个工厂里面就可以多一些人。我们还要提升主频,让开关的频率变快,也就是要找手脚更快的工人。
但是,功耗增加太多,就会导致 CPU 散热跟不上,这时,我们就需要降低电压。这里有一点非常关键,在整个功耗的公式里面,功耗和电压的平方是成正比的。这意味着电压下降到原来的 1/5,整个的功耗会变成原来的 1/25。
事实上,从 5MHz 主频的 8086 到 5GHz 主频的 Intel i9,CPU 的电压已经从 5V 左右下降到了 1V 左右。这也是为什么我们 CPU 的主频提升了 1000 倍,但是功耗只增长了 40 倍。比如说,我写这篇文章用的是 Surface Go,在这样的轻薄笔记本上,微软就是选择了把电压下降到 0.25V 的低电压 CPU,使得笔记本能有更长的续航时间。
2. 并行优化,理解阿姆达尔定律
虽然制程的优化和电压的下降,在过去的 20 年里,让我们的 CPU 性能有所提升。但是从上世纪九十年代到本世纪初,软件工程师们所用的“面向摩尔定律编程”的套路越来越用不下去了。“写程序不考虑性能,等明年 CPU 性能提升一倍,到时候性能自然就不成问题了”,这种想法已经不可行了。
多核并行,提高性能。如果想要使用这种思想,需要满足这样几个条件。
- 需要进行的计算,本身可以分解成几个可以并行的任务。好比上面的乘法和加法计算,几个人可以同时进行,不会影响最后的结果。
- 需要能够分解好问题,并确保几个人的结果能够汇总到一起。
- 在“汇总”这个阶段,是没有办法并行进行的,还是得顺序执行,一步一步来。
这就引出了我们在进行性能优化中,常常用到的一个经验定律,阿姆达尔定律(Amdahl’s Law)。这个定律说的就是,对于一个程序进行优化之后,处理器并行运算之后效率提升的情况。具体可以用这样一个公式来表示:
优化后的执行时间 = 受优化影响的执行时间 / 加速倍数 + 不受影响的执行时间
3. 总结延伸
我们可以看到,无论是简单地通过提升主频,还是增加更多的 CPU 核心数量,通过并行来提升性能,都会遇到相应的瓶颈。仅仅简单地通过“堆硬件”的方式,在今天已经不能很好地满足我们对于程序性能的期望了。于是,工程师们需要从其他方面开始下功夫了。
在“摩尔定律”和“并行计算”之外,在整个计算机组成层面,还有这样几个原则性的性能提升方法。
- 加速大概率事件。最典型的就是,过去几年流行的深度学习,整个计算过程中,99% 都是向量和矩阵计算,于是,工程师们通过用 GPU 替代 CPU,大幅度提升了深度学习的模型训练过程。本来一个 CPU 需要跑几小时甚至几天的程序,GPU 只需要几分钟就好了。Google 更是不满足于 GPU 的性能,进一步地推出了 TPU。后面的文章,我也会为你讲解 GPU 和 TPU 的基本构造和原理。
- 通过流水线提高性能。现代的工厂里的生产线叫“流水线”。我们可以把装配 iPhone 这样的任务拆分成一个个细分的任务,让每个人都只需要处理一道工序,最大化整个工厂的生产效率。类似的,我们的 CPU 其实就是一个“运算工厂”。我们把 CPU 指令执行的过程进行拆分,细化运行,也是现代 CPU 在主频没有办法提升那么多的情况下,性能仍然可以得到提升的重要原因之一。我们在后面也会讲到,现代 CPU 里是如何通过流水线来提升性能的,以及反面的,过长的流水线会带来什么新的功耗和效率上的负面影响。
- 通过预测提高性能。通过预先猜测下一步该干什么,而不是等上一步运行的结果,提前进行运算,也是让程序跑得更快一点的办法。典型的例子就是在一个循环访问数组的时候,凭经验,你也会猜到下一步我们会访问数组的下一项。后面要讲的“分支和冒险”、“局部性原理”这些 CPU 和存储系统设计方法,其实都是在利用我们对于未来的“预测”,提前进行相应的操作,来提升我们的程序性能。