The Earth Mover's Distance

The Earth Mover's Distance

The Earth Mover's Distance (EMD) is a method to evaluate dissimilarity between two multi-dimensional distributions in some feature space where a distance measure between single features, which we call the ground distance is given. The EMD ``lifts'' this distance from individual features to full distributions.

Intuitively, given two distributions, one can be seen as a mass of earth properly spread in space, the other as a collection of holes in that same space. Then, the EMD measures the least amount of work needed to fill the holes with earth. Here, a unit of work corresponds to transporting a unit of earth by a unit of ground distance.

A distribution can be represented by a set of clusters where each cluster is represented by its mean (or mode), and by the fraction of the distribution that belongs to that cluster. We call such a representation the signature of the distribution. The two signatures can have different sizes, for example, simple distributions have shorter signatures than complex ones.

Computing the EMD is based on a solution to the well-known transportation problem [1]. Suppose that several suppliers, each with a given amount of goods, are required to supply several consumers, each with a given limited capacity. For each supplier-consumer pair, the cost of transporting a single unit of goods is given. The transportation problem is then to find a least-expensive flow of goods from the suppliers to the consumers that satisfies the consumers' demand. Matching signatures can be naturally cast as a transportation problem by defining one signature as the supplier and the other as the consumer, and by setting the cost for a supplier-consumer pair to equal the ground distance between an element in the first signature and an element in the second. Intuitively, the solution is then the minimum amount of ``work'' required to transform one signature into the other.

This can be formalized as the following linear programming problem: Let $P=\{(p_1,w_{p_1}),\ldots,(p_m,w_{p_m})\}$ be the first signature with m clusters, where pi is the cluster representative and wpi is the weight of the cluster; $Q=\{(q_1,w_{q_1}),\ldots,(q_n,w_{q_n})\}$ the second signature with n clusters; and ${\bf D}=[d_{ij}]$ the ground distance matrix where dij is the ground distance between clusters pi and qj.

We want to find a flow ${\bf F}= [f_{ij}]$, with fij the flow between pi and qj, that minimizes the overall cost 

\begin{displaymath}\mbox{WORK}(P,Q,{\bf F}) = \sum_{i=1}^{m}\sum_{j=1}^{n} f_{ij}d_{ij} \;,\end{displaymath}

subject to the following constraints: 

\begin{eqnarray*}f_{ij} &\ge& 0 \qquad 1 \le i \le m ,\: 1 \le j \le n \\\sum......f_{ij} &=&\min(\sum_{i=1}^{m}w_{p_i},\sum_{j=1}^{n}w_{q_j})\;, \end{eqnarray*}


The first constraint allows moving ``supplies'' from  P  to  Q  and not vice versa. The next two constraints limits the amount of supplies that can be sent by the clusters in P  to their weights, and the clusters in  Q  to receive no more supplies than their weights; and the last constraint forces to move the maximum amount of supplies possible. We call this amount the  total flow . Once the transportation problem is solved, and we have found the optimal flow  ${\bf F}$ , the earth mover's distance is defined as the work normalized by the total flow: 

\begin{displaymath}\mbox{EMD}(P, Q) =\frac{\sum_{i=1}^{m}\sum_{j=1}^{n} f_{ij}d_{ij}}{\sum_{i=1}^{m}\sum_{j=1}^{n} f_{ij}} \;.\end{displaymath}

The normalization factor is introduced in order to avoid favoring smaller signatures in the case of partial matching.

The EMD has the following advantages

  • Naturally extends the notion of a distance between single elements to that of a distance between sets, or distributions, of elements.

  • Can be applied to the more general variable-size signatures, which subsume histograms. Signatures are more compact, and the cost of moving ``earth'' reflects the notion of nearness properly, without the quantization problems of most other measures.

  • Allows for partial matches in a very natural way. This is important, for instance, for image retrieval and in order to deal with occlusions and clutter.

  • Is a true metric if the ground distance is metric and if the total weights of two signatures are equal. This allows endowing image spaces with a metric structure.

  • Is bounded from below by the distance between the centers of mass of the two signatures when the ground distance is induced by a norm. Using this lower bound in retrieval systems significantly reduced the number of EMD computations.

  • Matches perceptual similarity better than other measures, when the ground distance is perceptually meaningful. This was shown by [2] for color- and texture-based image retrieval.

More details on the EMD can be found in [2].



1
F. L. Hitchcock. 
The distribution of a product from several sources to numerous localities. 
J. Math. Phys., 20:224-230, 1941.

2
Y. Rubner, C. Tomasi, and L. J. Guibas. 
A metric for distributions with applications to image databases. 
In  IEEE International Conference on Computer Vision, pages 59-66, January 1998.


from: http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值