高等数学:第五章 定积分(2)换元积分法 分部积分法 广义积分

§5.4  定积分的换元法

一、换元公式

定理】若

1、函数上连续;

2、函数在区间上单值且具有连续导数;

3、当上变化时,的值在上变化,且

 ,  

则有

                          (1)

证明:

(1)式中的被积函数在其积分区间上均是连续, 故(1)式两端的定积分存在。且(1)式两端的被积函数的原函数均是存在的。

假设上的一个原函数,据牛顿—莱布尼兹公式有

另一方面, 函数的导数为

这表明: 函数上的一个原函数, 故有:

从而有    

对这一定理给出几点注解:

1、用替换,将原来变量代换成新变量后,原定积分的限应同时换成新变量的限。

求出的原函数后,不必象不定积分那样,将变换成原变量的函数,只需将新变量的上下限代入中然后相减即可。

2、应注意代换的条件,避免出错。

(1)、单值且连续;

(2)、

3、对于时, 换元公式(1)仍然成立。

 

【例1】求  

【解法一】 令 

时,;当时,

又当  时,有 

且变换函数 上单值,上连续,

由换元公式有

 

【解法二】令 

时, ;  当时, 

又当时, 

且变换函数上单值, 上连续,

由换元公式有

注意:

在【解法二】中,经过换元,定积分的下限较上限大。

换元公式也可以反过来, 即

【例2】求

解:设

当 时,;当  时,

 

一般来说,这类换元可以不明显地写出新变量,自然也就不必改变定积分的上下限。

二、常用的变量替换技术与几个常用的结论

【例3】证明

1、若上连续且为偶函数,则

2、若上连续且为奇函数,则

证明:由定积分对区间的可加性有

  

 作替换  得

故有



为偶函数, 则 

为奇函数, 则  

【例4】若上连续, 证明:

1、

2、

并由此式计算定积分  

 

1、证明:设 

 

2、证明: 设 

  

 

 

【例5】求 

解:令 

故  

评注:

这一定积分的计算并未求原函数,只用到了变量替换、定积分性质,这一解法值得我们学习。




§5.5  定积分的分部积分法

设函数 在区间上具有连续的导函数, 则

而         

故         

这就是定积分的分部积分公式

也可写成形式   

 

【例1】求 

解: 令  ,   ,  

当  时,  ; 当  时, 

 

【例2】计算定积分  ( 为自然数 )。

解:设  ,                     

 ,     

 

这样,我们得到了递推公式,依此公式,再计算出两个简单的初值,即可求得

,       

当 为偶数,有

引入记号

同理,若为奇数,有

综合便得到著名的华里斯公式一

由于 , 故

 

【例3】求  (  为自然数 )

解:令, 

时,  ; 当  时, 

 

【例4】(华里斯公式二)

 

证明:设 

当  时, 有

如果 为偶数, 则有

如果 为奇数,则

综合得到著名而常用的华里斯公式二

华里斯公式的应用十分地广泛,掌握好它可以方便地求许多定积分。

【例5】求 

解:应用华里斯公式二, 有

  







§5.7  广义积分

引例计算曲线 轴的正半轴所围的曲边梯形的面积。

按照定积分的几何意义,所求的曲边梯形面积应为 

显然,这一积分再不是普通的定积分,因为它的积分上限是正无穷大

该如何来求这一“新定积分”的值呢?首先用计算机来做一个数值试验:

编程计算的值,并作出这些值的图象,观察图象是否逼近于一条固定的直线。

请运行matlab程序gs0504.m

一、积分区间为无穷区间的广义积分

【定义一】

设函数在区间上连续, 任取 ,如果极限

存在,则称此极限值为函数在无穷区间上的广义积分,并记作,亦即

此时,也称广义积分收敛;

如果上述极限不存在, 则称广义积分发散。

类似地

设函数 在区间上连续,任取 ,如果极限

存在,则称此极限值为函数在无穷区间上的广义积分,

 记作 ,亦即

此时,也称广义积分  收敛;如果上述极限不存在, 则称广义积分发散。

类似地

设函数在区间上连续,如果广义积分

 与 

同时收敛,则称上述两广义积分之和为函数在无穷区间上的广义积分,记作

亦即

这时,也称广义积分 收敛;如果上述极限不存在,则称广义积分发散。

上述积分称为无穷限的广义积分

【反例】 

但 

发散,因此,是发散的。

【例1】计算广义积分 

解:

  

显然,无穷限广义积分就是任意有限区间上定积分的极限。

【例2】计算广义积分 

解:

   

观察上述解题过程,极限符号直到最后才参与运算,为了方便,我们可以将之写成如下形式:

请注意:将上下限代入原函数时,意味着取极限

这样约定,并未改变无穷限广义积分的实质,却使记号简洁了许多,且与定积分的计算程序基本上一致。

【例3】证明广义积分当 时收敛; 当发散。

解:若 

   

若 

二 无界函数的广义积分

【定义二】

设函数 在区间上连续, 且,取 

如果极限 存在,则称此极限值为函数 在区间上的广义积分,记作 。亦即

此时,也称广义积分收敛;如果上述极限不存在,则称广义积分发散。点称之为奇点

类似地,有

设函数 在区间上连续,且,取 ,如果极限存在,则称此极限值为函数在区间上的广义积分,记作 。亦即

此时, 也称广义积分收敛;如果上述极限不存在, 则称广义积分发散。点  称之为奇点

类似地, 又有

设函数上除外均连续, 且

如果两个广义积分  与   均收敛, 则定义广义积分

否则称广义积分发散。点  称之为奇点

注明:上式中的不一定是相同的。

例4求 

解:

 故  奇点。

 

注明:为了简便,上述过程也可写成

【例5】讨论 的敛散性。

解:,故  是奇点。

故 发散,从而, 原广义积分亦发散。

此题若忽视是奇点,将积分当作普通积分来处理,会导致错误解法

【例6】证明广义积分 当时收敛;当时发散。

解:当 时, 是奇点,

广义积分 

故广义积分  发散;

 时,

故广义积分  收敛;

时,

故广义积分  发散;

综合得:




from: http://sxyd.sdut.edu.cn/gaoshu1/

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值