姿态估计 Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations

Abstract

We present a method for estimating articulated human pose from a single static image based on a graphical model with novel pairwise relations that make adaptive use of local image measurements. More precisely, we specify a graphical model for human pose which exploits the fact the local image measurements can be used both to detect parts (or joints) and also to predict the spatial relationships between them (Image Dependent Pairwise Relations). These spatial relationships are represented by a mixture model. We use Deep Convolutional Neural Networks (DCNNs) to learn conditional probabilities for the presence of parts and their spatial relationships within image patches. Hence our model combines the representational flexibility of graphical models with the efficiency and statistical power of DCNNs. Our method significantly outperforms the state of the art methods on the LSP and FLIC datasets and also performs very well on the Buffy dataset without any training.


@InProceedings{Chen_NIPS14,
  title        = {Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise Relations},
  author       = {Xianjie Chen and Alan Yuille},
  booktitle    = {Advances in Neural Information Processing Systems (NIPS)},
  year         = {2014},
}


Key Ideas

1.  Intuition: We can reliably predict the relative positions of a part's neighbors (as well as the presence of the part itself) by  only observing the local image patch around it. Motivation
2. Deep Convolutional Neural Network is suitable to extract information about  pairwise part relations, as well as  part presence, from local image patches, which can be used in the unary and pairwise terms of the Graphical Model. Deep Convolutional Neural Network

Estimation Examples

Pose Estimation Examples

Performance

Comparison of  strict PCP results on the  Leeds Sport Pose (LSP) Dataset using  Observer-Centric (OC) annotations.
Method Torso Head Upper Arms Lower Arms Upper Legs Lower Legs Mean
Ours 92.7 87.8 69.2 55.4 82.9 77.0 75.0
Pishchulin et al., ICCV'13 88.7 85.6 61.5 44.9 78.8 73.4 69.2
Ouyang et al., CVPR'14 85.8 83.1 63.3 46.6 76.5 72.2 68.6
Ramakrishna et al., ECCV'14 88.1 80.9 62.3 39.1 78.9 73.4 67.6
Eichner&Ferrari, ACCV'12 86.2 80.1 56.5 37.4 74.3 69.3 64.3
Pishchulin et al., CVPR'13 87.5 78.1 54.2 33.9 75.7 68.0 62.9
Yang&Ramanan, CVPR'11 84.1 77.1 52.5 35.9 69.5 65.6 60.8
Kiefel&Gehler, ECCV'14 84.4 78.4 53.3 27.4 74.4 67.1 60.7
Numbers are from the corresponding papers or errata.
Comparison of  strict PCP results on the  Leeds Sport Pose (LSP) Dataset using Person-Centric (PC) annotations. Note that both our method and  Tompson et al., NIPS'14* include the  Extended Leeds Sport Pose (ex_LSP) Dataset as training data.
Method Torso Head Upper Arms Lower Arms Upper Legs Lower Legs Mean
Ours* 96.0 85.6 69.7 58.1 77.2 72.2 73.6
Tompson et al., NIPS'14* 90.3 83.7 63.0 51.2 70.4 61.1 66.6
Pishchulin et al., ICCV'13 88.7 85.1 46.0 35.2 63.6 58.4 58.0
Wang&Li, CVPR'13 87.5 79.1 43.1 32.1 56.0 55.8 54.1
Numbers are from the  performance evaluation by Pishchulin et al.
Comparison of  strict PCP results on the  Frames Labeled In Cinema (FLIC) Dataset using Observer-Centric (OC) annotations.
Method Upper Arms Lower Arms Mean
Ours 97.0 86.8 91.9
Tompson et al., NIPS'14 93.7 80.9 87.3
MODEC, CVPR'13 84.4 52.1 68.3
Numbers are from our evaluation using the prediction results released by the authors.
Comparison of PDJ curves of elbows and wrists on the Frames Labeled In Cinema (FLIC) Datasetusing Observer-Centric (OC) annotations. The curves are for Tompson et al., NIPS'14DeepPose, CVPR'14 and MODEC, CVPR'13. FLIC PDJ curves

Figure Data: flic_elbows.fig | flic_wrists.fig


Cross-dataset PCP results on the  Buffy Stickmen Dataset using Observer-Centric (OC) annotations.
Method Upper Arms Lower Arms Mean
Ours* 96.8 89.0 92.9
Ours* strict 94.5 84.1 89.3
Yang, PAMI'13 97.8 68.6 83.2
Yang, PAMI'13 strict 94.3 57.5 75.9
Sapp, ECCV'10 95.3 63.0 79.2
FLPM, ECCV'12 93.2 60.6 76.9
Eichner, IJCV'12 93.2 60.3 76.8
Numbers are from the corresponding papers.
Cross-dataset PDJ curves of elbows and wrists on the Buffy Stickmen Dataset using Observer-Centric (OC) annotations. Note that both our method and DeepPose are trained on the FLIC dataset. Compared with the curves on the FLIC dataset, the margin between our method and DeepPose significantly increases, which implies that our model generalizes better. Buffy PDJ curves

Figure Data: cross_dataset_buffy_elbows.fig | cross_dataset_buffy_elbows.fig


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Dynamic slam(动态SLAM)是一种利用机器人的传感器数据进行实时地图构建和定位的技术。AirDos是一种动态SLAM算法,它能够受益于关节化的物体。 关节化的物体是指能够以某种方式移动、变形或旋转的物体。这些物体通常具有可调整的关节、连杆或其他连接机构,使得它们能够适应不同的工作环境和任务需求。动态SLAM的一个关键挑战是对关节化物体进行准确的建模和定位,而AirDos则能够很好地解决这个问题。 首先,AirDos通过传感器数据对关节化物体进行建模。它能够识别关节和连杆,并确定它们的位置、方向和连接方式。这样一来,AirDos就能够建立起一个准确的物体模型,用于后续的定位和导航。 其次,AirDos能够利用关节化物体的运动信息进行定位。由于关节化物体的部件可以相对独立地移动和旋转,它们在运动过程中会产生特定的视觉或激光信号。AirDos可以通过这些信号来跟踪物体的位置和姿态,并结合其他传感器数据来实现高精度的定位。 最后,AirDos能够根据关节化物体在环境中的变化进行自适应地更新地图。一些关节化物体可能会根据环境的变化而调整自身的形态,AirDos能够及时地检测到这些变化,并更新地图以适应新的环境。这样一来,AirDos就能够实现一个准确和实时的地图,提高机器人在复杂环境中的定位能力和导航效果。 综上所述,AirDos作为一种动态SLAM算法,能够受益于关节化的物体。通过对关节化物体进行建模、利用它们的运动信息进行定位,以及自适应地更新地图,AirDos能够提高机器人在复杂环境中的定位能力和导航效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值