点积和叉积的几何意义

一、点积

向量\vec{v}与向量\vec{w}点乘,得到的结果是一个标量,大小等于\vec{v}的模与\vec{w}的模的乘积与其夹角\theta的余弦  

                                                        \vec{v} \cdot \vec{w} = \left | v \right | \cdot \left | w \right | \cdot \cos \theta

由上可见,其符号由\cos \theta决定,即\theta角的大小定。

     \vec{v} \cdot \vec{w}              \theta            几何方向
       > 0  0^{\circ}  \leq  \theta  < 90^{\circ}       主要指向同一方向 
       = 0             \theta90^{\circ}        两向量垂直
       < 0

  90^{\circ} <  \theta  \leq 180^{\circ}

        主要指向相反方向 

向量 \vec{v}与向量\vec{w}的点积,其几何解释可理解为,向量\vec{v}在向量\vec{w}方向上的投影长度,乘以\vec{w}的长度。 如下图例所示:

 二、叉积

1.二维叉积

假设有两2D向量\vec{v} = (Vx, Vy),在向量\vec{w} = (Wx, Wy),其叉乘得到标量结果

\vec{v} \times \vec{w} = Vx * Wy - Wx * Vy

设其值为k,则:

1.其值k大小为向量\vec{v}与向量\vec{w}组成的平行四边形的面积

2.如果k > 0,则\vec{v}\vec{w}需要按正方向旋转角度< 180^{\circ}, 如果k < 0,则\vec{v}\vec{w}需要正方向旋转角度> 180^{\circ},如果k = 0,则 \vec{v}\vec{w} 共线。(正方向与所用坐标系有关,左手坐标系正方向为顺时针,右手坐标系正方向为逆时针)。

2.三维叉积

三维叉积得到的一个三维矢量。如下图所示:

         \vec{v} \times \vec{w}得到新的向量\vec{p},新向量\vec{p}的长度等于向量\vec{v}与向量\vec{w}组成的平行四边形的面积,并且 向量\vec{p} 与 向量\vec{v}和向量\vec{w}所在平面垂直。其方向遵守左手定则或右手定则(看是用的什么坐标系,如果是左手坐标系则遵守左手定则,右手坐标系则遵守右手定则),上图是用的右手定则。

所以三维叉积很容易拿来算平面的法向量。

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值