一、点积
向量与向量
点乘,得到的结果是一个标量,大小等于
的模与
的模的乘积与其夹角
的余弦
由上可见,其符号由决定,即
角的大小定。
| | 几何方向 |
> 0 | | 主要指向同一方向 |
= 0 | | 两向量垂直 |
< 0 | | 主要指向相反方向 |
向量 与向量
的点积,其几何解释可理解为,向量
在向量
方向上的投影长度,乘以
的长度。 如下图例所示:
二、叉积
1.二维叉积
假设有两2D向量 = (Vx, Vy),在向量
= (Wx, Wy),其叉乘得到标量结果
= Vx * Wy - Wx * Vy
设其值为k,则:
1.其值k大小为向量与向量
组成的平行四边形的面积
2.如果k > 0,则到
需要按正方向旋转角度<
, 如果k < 0,则
到
需要正方向旋转角度>
,如果k = 0,则
到
共线。(正方向与所用坐标系有关,左手坐标系正方向为顺时针,右手坐标系正方向为逆时针)。
2.三维叉积
三维叉积得到的一个三维矢量。如下图所示:
得到新的向量
,新向量
的长度等于向量
与向量
组成的平行四边形的面积,并且 向量
与 向量
和向量
所在平面垂直。其方向遵守左手定则或右手定则(看是用的什么坐标系,如果是左手坐标系则遵守左手定则,右手坐标系则遵守右手定则),上图是用的右手定则。
所以三维叉积很容易拿来算平面的法向量。