【线性空间学习笔记】基础概念篇

本文是关于线性空间的学习笔记,探讨了线性空间的基础概念,包括线性空间的定义、性质和例子。文章还涉及线性相关、线性无关、维数、基与坐标的概念,以及同构和线性映射的初步介绍,帮助理解线性代数的核心思想。
摘要由CSDN通过智能技术生成


前言

瞬间化身毕加索,抽象大师就是你(「・ω・)「

迎春 2023.4.9
昨日薄衫冬里醉,
今朝柳绿欲娉婷。
不必堂前来燕语,
风过东篱满山青。

什么叫线性?为什么需要定义线性?
\quad
\quad 在初等数学中,线性狭义地指直线型函数,着重于函数图像。
\quad
\quad 而在高等数学中,如果一种运算同时满足特定的“加性“和”齐性”,则称这种运算是线性的。例如,空间运算中的向量加法和数乘。
\quad
\quad 广义到一维以上的函数,**线性是指函数与加法和缩放相容的性质,也称为叠加原理(superposition principle)。**这种规律在初等数学中,就并非所有直线型函数都表现为线性,只有图像过原点的直线函数才能被称为线性函数。
\quad
\quad 事实上,线性是对线性空间特征的总结。定义线性的好处是,找到了一种特殊的数学关系,并且该关系能有效地简化问题。


线性空间

为什么要定义线性空间?为什么要根据线性运算来定义线性空间?

​    我们需要找到一种更具普适性的空间,使其在具有向量空间性质的同时,空间内用于运算的元素能更加一般性,不再局限于有序数组(即打破向量必须为有序数组的论断),使得该空间有区别于一般的几何空间。

    线性空间,顾名思义其特征在于线性法则(叠加原理)。即其内部元素的运算必须满足线性法则。

定义

如果一个代数系统 ( V ; + , ⋅ ; P ) (V;+, \cdot ;\mathbb{P}) (V;+,;P)满足下列性质:
∀ α , β ∈ V , α + β = β + α (1 加法交换律) \forall \alpha , \beta \in V , \alpha + \beta = \beta + \alpha \tag{1 加法交换律} α,βV,α+β=β+α(加法交换律)

∀ α , β , γ ∈ V , ( α + β ) + γ = α + ( β + γ ) (2 加法结合律) \forall \alpha , \beta , \gamma \in V , ( \alpha + \beta ) + \gamma = \alpha + ( \beta + \gamma ) \tag{2 加法结合律} α,β,γV,(α+β)+γ=α+(β+γ)(加法结合律)

∃ θ ∈ V , ∀ α ∈ V , α + θ = α (3 加法有单位元) \exists \theta \in V , \forall \alpha \in V , \alpha + \theta = \alpha \tag{3 加法有单位元} θV,αV,α+θ=α(加法有单位元)

∀ α ∈ V , ∃ α ′ ∈ V , α + α ′ = θ (4 加法有负元) \forall \alpha \in V, \exists \alpha ' \in V, \alpha + \alpha ' = \theta \tag{4 加法有负元} αV,αV,α+α=θ(加法有负元)

∀ α , β ∈ V , ∀ k ∈ P , k ⋅ ( α + β ) = k ⋅ α + k ⋅ β (5 数乘对向量加法有分配律) \forall \alpha, \beta \in V, \forall k \in \mathbb{P}, k \cdot (\alpha + \beta) = k \cdot \alpha + k \cdot \beta \tag{5 数乘对向量加法有分配律} α,βV,kP,k(α+β)=kα+kβ(数乘对向量加法有分配律)

∀ α ∈ V , ∀ k , l ∈ P , ( k + l ) ⋅ α = k ⋅ α + l ⋅ α (6 数乘对域加法有分配律) \forall \alpha \in V, \forall k,l \in \mathbb{P}, (k+l) \cdot \alpha = k \cdot \alpha + l \cdot \alpha \tag{6 数乘对域加法有分配律} αV,k,lP,(k+l)α=kα+lα(数乘对域加法有分配律)

∀ α ∈ V , ∀ k , l ∈ P , ( k ⋅ l ) ⋅ α = k ⋅ ( l ⋅ α ) (7 数乘与域乘法相容) \forall \alpha \in V, \forall k,l \in \mathbb{P}, (k \cdot l) \cdot \alpha = k \cdot (l \cdot \alpha) \tag{7 数乘与域乘法相容} αV,k,lP,(kl)α=k(lα)(数乘与域乘法相容)

∀ α ∈ V , 1 ⋅ α = α (8 数乘有单位元) \forall \alpha \in V, 1 \cdot \alpha = \alpha \tag{8 数乘有单位元} αV,1α=α(数乘有单位元)

那么,就称 ( V ; + , ⋅ ; P ) (V;+, \cdot ;\mathbb{P}) (V;+,;P)为数域 P \mathbb{P} P上的一个线性空间。在不引起混淆的情况下, ( V ; + , ⋅ ; P ) (V;+, \cdot ;\mathbb{P}) (V;+,;P)也可记为 V V V

注:定义中提到的 "单位元" 是对于某种⼆元运算⽽⾔的, 当单位元和其他元素进⾏⼆元运算时, 不会改变那些元素。⽽某元素在某运算下的 “逆元” 是指该元素与逆元进⾏该运算后会得到单位元。
   也就是说,单位元的存在保证了这种二元运算存在对应的逆运算。对加法而言,零元是单位元;对数乘而言,1是单位元。

性质

  • 1.向量加法零元是唯一的,我们把这个向量 θ \theta θ也称为零向量。

假设向量加法中零元不唯一,则
∀ α , ∃ α = α + θ 1 = α + θ 2 \forall \alpha, \exists \alpha = \alpha + \theta_1 = \alpha + \theta_2 α,α=α+θ1=α+θ2
且特别地, θ 1 + θ 2 = θ 1 , θ 1 + θ 2 = θ 2 \theta_1 + \theta_2 = \theta_1 ,\theta_1 + \theta_2 = \theta_2 θ1+θ2=θ1,θ1+θ2=θ2
θ 1 = θ 2 \theta_1 = \theta_2 θ1=θ2,与假设相悖

  • 2.向量加法对于一个向量的负元也是唯一的。我们把 α ′ \alpha ' α记作 − α -\alpha α,称为 α \alpha α的负向量。

假设向量加法对于一个向量 α \alpha α的负元不唯一,至少存在 β , γ \beta , \gamma β,γ α \alpha α的负元,则
β = β + θ = β + ( α + γ ) = ( β + α ) + γ = θ + γ = γ \beta = \beta + \theta = \beta + (\alpha + \gamma) = (\beta + \alpha) + \gamma = \theta + \gamma = \gamma β=β+θ=β+(α+γ)=(β+α)+γ=θ+γ=γ,与假设相悖

  • 3. ∀ α ∈ V , 0 ⋅ α = θ \forall \alpha \in V,0\cdot \alpha = \theta αV,0α=θ.

α + 0 ⋅ α = ( 1 + 0 ) α = α = α + θ \alpha + 0\cdot\alpha = (1+0)\alpha = \alpha = \alpha + \theta α+0α=(1+0)α=α=α+θ
0 ⋅ α = θ 0\cdot\alpha = \theta 0α=θ

  • 4. ∀ α ∈ V , ( − 1 ) α = − α \forall \alpha \in V, (-1)\alpha = -\alpha αV,(1)α=α.

证明逆元要通过单位元和逆运算入手
α + ( − 1 ) α = ( 1 + ( − 1 ) ) α = 0 ⋅ α = θ \alpha + (-1)\alpha = (1+(-1))\alpha = 0 \cdot \alpha = \theta α+(1)α=(1+(1))α=0α=θ
所以, ( − 1 ) α = − α (-1)\alpha = -\alpha (1)α=α

  • 5. ∀ k ∈ P , k ⋅ θ = θ \forall k \in \mathbb{P},k \cdot \theta = \theta kP,kθ=θ.

k ⋅ θ = k ⋅ ( α + ( − α ) ) = k ⋅ α + k ⋅ ( − α ) = = k ⋅ α + ( − k ) ⋅ α = ( k + ( − k ) ) ⋅ α = 0 ⋅ α = θ k \cdot \theta = k \cdot (\alpha + (-\alpha)) = k \cdot \alpha + k \cdot (-\alpha) = = k \cdot \alpha + (-k) \cdot \alpha = (k+(-k)) \cdot \alpha = 0 \cdot \alpha = \theta kθ=k(α+(α))=kα+k(α)==kα+(k)α=(k+(k))α=0α=θ

  • 6. ∀ α ∈ V , ∀ k ∈ P , k α = θ ⇒ k = 0 \forall \alpha \in V, \forall k \in \mathbb{P}, k\alpha = \theta \Rightarrow k=0 αV,kP,kα=θk=0 α = θ \alpha = \theta α=θ.

θ = 0 ⋅ α ⇒ k = 0 \theta = 0\cdot \alpha \Rightarrow k=0 θ=0αk=0
等式两边同时乘以 1 k \frac{1}{k} k1,得 1 k ⋅ k α = 1 k ⋅ θ ⇒ α = θ \frac 1k \cdot k \alpha = \frac 1k \cdot \theta \Rightarrow \alpha = \theta k1kα=k1θα=θ

  • 7. ∀ α , β , γ ∈ V , α + β = α + γ ⇒ β = γ \forall \alpha , \beta , \gamma \in V, \alpha + \beta = \alpha + \gamma \Rightarrow \beta = \gamma α,β,γV,α+β=α+γβ=γ.

等式两边同时加上负元 − α -\alpha α − α + α + β = − α + α + γ ⇒ θ + β = θ + γ -\alpha + \alpha + \beta = -\alpha + \alpha + \gamma \Rightarrow \theta + \beta = \theta + \gamma α+α+β=α+α+γθ+β=θ+γ
所以, β = γ \beta = \gamma β=γ

例子

1.几何空间,其元素就是空间里的坐标

2.数域 P \mathbb{P} P,其元素就是数域上的数

3.多项式集合 P n [ x ] = { f ( x ) ∈ P [ x ] ∣ ∂ f ( x ) < n } \mathbb{P}_{n}[x] = \{ f(x) \in \mathbb{P}[x] | \partial f(x) < n \} Pn[x]={f(x)P[x]f(x)<n}

4.区间 [ a , b ] [a,b] [a,b]上连续函数的全体构成的集合 C [ a , b ] C[a,b] C[a,b]加上函数的加法和数乘构成一线性空间


线性相关&线性无关

在线性代数里,向量空间的一组元素中,若没有向量可用有限个其他向量的线性组合所表示,则称为线性无关(或线性独立)(linearly independent),反之称为线性相关(linearly dependent)。

假设 v 1 , v 2 , … , v n v_1,v_2, \dots,v_n v1,v2,,vn是线性空间 V V V n n n个向量,

  • 若它们为线性相关,则在域 K K K中有非全零的元素 a 1 , a 2 , … , a n a_{1},a_{2},\dots,a_{n} a1,a2,,an,使得

a 1 v 1 + a 2 v 2 + ⋯ + a n v n = 0 a_{1}v_{1}+a_{2}v_{2}+\dots+a_{n}v_{n}=0 a1v1+a2v2++anvn=0

​ 或更简略地表示成:
∑ i = 1 n a i v i = 0 \sum_{i=1}^{n} a_iv_i = 0 i=1naivi=0
​ (注意等式右边的零是 V V V的零向量,不是 K K K的零元素)

  • 如果 K K K中不存在这样的元素,那么 v 1 , v 2 , … , v n v_1,v_2, \dots,v_n v1,v2,,vn线性无关。即若等式 a 1 v 1 + a 2 v 2 + ⋯ + a n v n = 0 a_{1}v_{1}+a_{2}v_{2}+\dots+a_{n}v_{n}=0 a1v1+a2v2++anvn=0成立,那么对所有 i = 1 , 2 , … , n i=1,2,\dots,n i=1,2,,n都有 a i = 0 a_i=0 ai=0

维数、基与坐标

为什么要定义线性空间的维数
\quad
\quad 我们知道在狭义的向量空间(几何空间)中,其维数代表的是极大线性无关向量组中的向量个数。在这里也是相同的道理,线性空间的维数代表了线性空间中最多能有多少个线性无关的元素(向量)。
\quad
\quad 由此,得到一个极大线性无关向量组,我们可以通过对这个极大线性无关向量组内的向量,通过线性运算法则,表示出该线性空间内的所有向量。因此,我们需要一个概念去定义特殊的极大线性无关向量组。

定义

假设 v 1 , v 2 , … , v n v_1,v_2, \dots,v_n v1,v2,,vn是线性空间 V V V n n n个向量,满足:

​ (i) v 1 , v 2 , … , v n v_1,v_2, \dots,v_n v1,v2,,vn线性无关

​ (ii) V V V中任一向量 v v v总可由 v 1 , v 2 , … , v n v_1,v_2, \dots,v_n v1,v2,,vn线性表出

​ 那么, v 1 , v 2 , … , v n v_1,v_2, \dots,v_n v1,v2,,vn就称为线性空间 V V V的一个 n n n称为线性空间 V V V维数,记为 dim ⁡ V = n ‾ \underline{\dim V = n} dimV=n

​ 维数为 n n n的线性空间,称为 n n n维线性空间,记作 V n V_n Vn。只含有一个零向量的线性空间没有基,规定它的维数是0。

\quad 在线性空间中任找一组向量,如果它们的_秩不随向量组的选取而改变_,那就把这个秩称为线性空间的维数。(根据向量组的线性相关理论这个描述和定义是等价的)
\quad
\quad 如果这样的线性无关向量组中有无数个向量,我们称其为无限维线性空间。例如,全体 P \mathbb {P} P上的多项式组成的集合 P [ x ] \mathbb{P} [x] P[x]构成的线性空间,我们可以找到一组线性无关组 ( 1 , x , x 2 , ⋯   , x n , ⋯   ) (1,x,x^{2},\cdots ,x^{n},\cdots ) (1,x,x2,,xn,),其中含有无限个向量,因此它是无限维的。

  • 假设 v 1 , v 2 , … , v n v_1,v_2, \dots,v_n v1,v2,,vn 是线性空间 V n V_n Vn的一个基。对于任一向量 v ∈ V n v \in V_n vVn,总有且仅有一组有序数 a 1 , a 2 , … , a n a_{1},a_{2},\dots,a_{n} a1,a2,,an 使

v = a 1 v 1 + a 2 v 2 + ⋯ + a n v n v = a_{1}v_{1}+a_{2}v_{2}+\dots+a_{n}v_{n} v=a1v1+a2v2++anvn

a 1 , a 2 , … , a n a_{1},a_{2},\dots,a_{n} a1,a2,,an 这组有序数就称为向量 v v v v 1 , v 2 , … , v n v_1,v_2, \dots,v_n v1,v2,,vn 这个基中的坐标,并记作 v = ( a 1 , a 2 , … , a n ) T v = (a_{1},a_{2},\dots,a_{n})^T v=(a1,a2,,an)T

性质

1.设在 n n n维线性空间 V n V_n Vn中取定一个基 v 1 , v 2 , … , v n v_1,v_2, \dots,v_n v1,v2,,vn ,则有唯一( n n n维数组向量空间 R n \mathbb{R}^n Rn中的)向量 ( a 1 , a 2 , … , a n ) T (a_{1},a_{2},\dots,a_{n})^T (a1,a2,,an)T V n V_n Vn中的向量 v v v对应。

  • 假设 R n \mathbb{R}^n Rn​中有不同的向量可以对应 V n V_n Vn中的向量 v v v,则
  • v = a 1 v 1 + a 2 v 2 + ⋯ + a n v n = v = a 1 ′ v 1 + a 2 ′ v 2 + ⋯ + a n ′ v n v = a_{1}v_{1}+a_{2}v_{2}+\dots+a_{n}v_{n}=v = a_{1}'v_{1}+a_{2}'v_{2}+\dots+a_{n}'v_{n} v=a1v1+a2v2++anvn=v=a1v1+a2v2++anvn
  • ( a 1 − a 1 ′ ) v 1 + ( a 2 − a 2 ′ ) v 2 + ⋯ + ( a n − a n ′ ) v n = 0 (a_{1}-a_{1}')v_{1}+(a_{2}-a_{2}')v_{2}+\dots+(a_{n}-a_{n}')v_{n} = 0 (a1a1)v1+(a2a2)v2++(anan)vn=0
  • v 1 , v 2 , … , v n v_1,v_2, \dots,v_n v1,v2,,vn 线性相关,与条件矛盾

2.设 α ↔ ( x 1 , x 2 , … , x n ) T , β ↔ ( y 1 , y 2 , … , y n ) T \alpha \leftrightarrow (x_{1},x_{2},\dots,x_{n})^T, \beta \leftrightarrow (y_{1},y_{2},\dots,y_{n})^T α(x1,x2,,xn)T,β(y1,y2,,yn)T,则

(i) α + β ↔ ( x 1 , x 2 , … , x n ) T + ( y 1 , y 2 , … , y n ) T \alpha + \beta \leftrightarrow (x_{1},x_{2},\dots,x_{n})^T + (y_{1},y_{2},\dots,y_{n})^T α+β(x1,x2,,xn)T+(y1,y2,,yn)T

  • α = x 1 v 1 + x 2 v 2 + ⋯ + x n v n , β = y 1 v 1 + y 2 v 2 + ⋯ + y n v n \alpha = x_{1}v_{1} + x_{2}v_{2} + \dots + x_{n}v_{n},\quad \beta = y_{1}v_{1} + y_{2}v_{2} + \dots + y_{n}v_{n} α=x1v1+x2v2++xnvn,β=y1v1+y2v2++ynvn
  • α + β = ( x 1 v 1 + ⋯ + x n v n ) + ( y 1 v 1 + ⋯ + y n v n ) = ( x 1 + y 1 ) v 1 + ⋯ + ( x n + y n ) v n \alpha + \beta = (x_{1}v_{1} + \dots + x_{n}v_{n}) + (y_{1}v_{1} + \dots + y_{n}v_{n}) = (x_{1}+y_{1})v_{1} + \dots + (x_{n}+y_{n})v_{n} α+β=(x1v1++xnvn)+(y1v1++ynvn)=(x1+y1)v1++(xn+yn)vn
  • α + β ↔ ( x 1 + y 1 , x 2 + y 2 , … , x n + y n ) T \alpha + \beta \leftrightarrow (x_{1}+y_{1},x_{2}+y_{2},\dots,x_{n}+y_{n})^T α+β(x1+y1,x2+y2,,xn+yn)T
  • ( x 1 + y 1 , x 2 + y 2 , … , x n + y n ) T = ( x 1 , x 2 , … , x n ) T + ( y 1 , y 2 , … , y n ) T (x_{1}+y_{1},x_{2}+y_{2},\dots,x_{n}+y_{n})^T = (x_{1},x_{2},\dots,x_{n})^T + (y_{1},y_{2},\dots,y_{n})^T (x1+y1,x2+y2,,xn+yn)T=(x1,x2,,xn)T+(y1,y2,,yn)T

(ii) λ α ↔ λ ( x 1 , x 2 , … , x n ) T \lambda\alpha \leftrightarrow \lambda(x_{1},x_{2},\dots,x_{n})^T λαλ(x1,x2,,xn)T.

  • α = x 1 v 1 + x 2 v 2 + ⋯ + x n v n \alpha = x_{1}v_{1} + x_{2}v_{2} + \dots + x_{n}v_{n} α=x1v1+x2v2++xnvn
  • λ α = λ ( x 1 v 1 + ⋯ + x n v n ) = λ x 1 v 1 + ⋯ + λ x n v n \lambda\alpha = \lambda(x_{1}v_{1} + \dots + x_{n}v_{n})=\lambda x_{1}v_{1} + \dots + \lambda x_{n}v_{n} λα=λ(x1v1++xnvn)=λx1v1++λxnvn
  • λ α ↔ ( λ x 1 , λ x 2 , … , λ x n ) T \lambda\alpha \leftrightarrow (\lambda x_{1}, \lambda x_{2}, \dots, \lambda x_{n})^T λα(λx1,λx2,,λxn)T
  • ( λ x 1 , λ x 2 , … , λ x n ) T = λ ( x 1 , x 2 , … , x n ) T (\lambda x_{1}, \lambda x_{2}, \dots, \lambda x_{n})^T = \lambda(x_{1},x_{2},\dots,x_{n})^T (λx1,λx2,,λxn)T=λ(x1,x2,,xn)T

同构

\quad V V V U U U是两个线性空间,如果在它们的向量之间有一一对应的关系,且这个对应关系保持线性组合的对应,那么就称线性空间 V V V U U U同构
\quad
\quad 在数学中研究同构的主要目的是为了把数学理论应用于不同的领域。如果两个结构是同构的,那么其上的对象会有相似的性质,对某个结构成立的命题在另一个结构上也就成立,这就使得理解和处理问题变得容易。

概念

\quad V V V U U U是两个线性空间,如果 V → U V \to U VU存在一个双射 σ \mathbb{\sigma} σ,对任意的 V V V中向量 α , β \alpha , \beta α,β,数域 P P P中的数 k k k,满足:
\quad (1) σ ( α ) + σ ( β ) = σ ( α + β ) \sigma\left(\alpha \right) + \sigma\left(\beta \right) = \sigma\left(\alpha+\beta \right) σ(α)+σ(β)=σ(α+β)
\quad (2) k σ ( α ) = σ ( k α ) k \sigma\left(\alpha \right) = \sigma\left(k\alpha \right) (α)=σ(kα)
那么,就称线性空间 V V V U U U同构映射 σ \sigma σ同构映射

性质

1.任何 n n n维线性空间都与 R n \mathbb{R}^n Rn同构,即 维数相等的线性空间都同构 ‾ \underline{维数相等的线性空间都同构} 维数相等的线性空间都同构 ⇒ \Rightarrow 线性空间的结构由其维数决定

2. V n V_n Vn中抽象的线性运算可以转化为 R n \mathbb{R}^n Rn中的线性运算,并且 R n \mathbb{R}^n Rn中凡是涉及线性运算的性质都适用于 V n V_n Vn(但 R n \mathbb{R}^n Rn中超出线性运算的性质,就不一定适用于 V n V_n Vn —— 例如,内积概念在 V n V_n Vn中不一定有意义)


线性映射

为什么要定义线性映射?
\quad
\quad 映射,指两个集合之间元素的对应关系,经常等同于函数。 函数作为一个处理输入、输出的工具

定义

  • V V V W W W都是在域 K K K上定义的向量空间,若函数 f : V → W f:V \to W f:VW对任意向量 x , y ∈ V x,y \in V x,yV与任何标量 a ∈ K a \in K aK,满足线性运算法则(叠加原理),则 f f f被称为尸线性映射。

这等价于要求 f f f对任意向量 x 1 , x 2 , … , x n ∈ V x_1,x_2,\dots ,x_n \in V x1,x2,,xnV和任意标量 a 1 , a 2 , … , a n ∈ K a_1,a_2,\dots ,a_n \in K a1,a2,,anK必须满足
f ( a 1 ⋅ x 1 + ⋯ + a n ⋅ x n ) = a 1 ⋅ f ( x 1 ) + ⋯ + a n ⋅ f ( x n ) f(a_1\cdot x_1 + \dots + a_n\cdot x_n) = a_1\cdot f(x_1) + \dots + a_n\cdot f(x_n) f(a1x1++anxn)=a1f(x1)++anf(xn)
若要特别强调标量所在的母集合是域 K K K,会特称 f f f为** K − K- K线性映射**。如,对复数的共轭运算 − : C → C ^- : \mathbb{C} \to \mathbb{C} :CC R − \mathbb{R}- R线性映射(因为取实数为标量才会有齐次性)。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学:人类精神虐待(゚Д゚)ノ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值