【排列组合】基础概念和运算性质


前言

数学,人类精神虐待。

           \qquad ~~~~~~~~~~           打油数学
毕氏三角为勾股,弦三四而后定五。
忽闻两点不可度,径方一派始圆图。
笔割纸绝悲无路,元微仍可积从头。
今时不同马非马,危机至此有还无。


排列 Arrangement/Permutation

由来

n n n个不同物品放入 m m m个有序位置 ( n ≥ m ; n , m ∈ N + ) (n \ge m;n,m\in N^+) (nm;n,mN+),有多少种放法。

  • 对第 1 1 1个位置,我们有 n n n个物品就有 n n n种放法;

    对第 2 2 2个位置,我们在第 1 1 1个位置放好的情况下,还剩下 ( n − 1 ) (n-1) (n1)个物品,就有 ( n − 1 ) (n-1) (n1)种放法;

    以此类推,对第 i i i个位置,我们还有 ( n − i + 1 ) (n-i+1) (ni+1)个物品就有 ( n − i + 1 ) (n-i+1) (ni+1)种放法。

    而每个位置之间的物品摆放互不干扰,也就是说在计算总方法数时,前一个位置的方法数总是对后面位置的摆放呈多种可能的状态叠加,

    ​ 即 A ( n , m ) = a m A ( n − 1 , m − 1 ) ‾ \underline{A(n,m)= a_mA(n-1,m-1)} A(n,m)=amA(n1,m1) A ( x , y ) A(x,y) A(x,y)代表 x x x个物品放入 y y y个位置的总方法数, a m a_m am代表第 m m m个位置的方法数,并且 a m = A ( n , m ) A ( n − 1 , m − 1 ) = n a_m = \frac{A(n,m)}{A(n-1, m-1)} = n am=A(n1,m1)A(n,m)=n。由此我们可以特别地规定:
    i f   y = 0 , ∀ x ∈ N , A ( x , 0 ) = 1 if~y=0,\forall x \in N,A(x,0)=1 if y=0xN,A(x,0)=1因为当位置消失时,我们不必再继续排列,此时为了保证运算结果不变,令其为 1 1 1
    因此我们可推:
    A ( n , m ) = ∏ i = 0 m − 1 a n − i = ∏ i = 0 m − 1 A ( n − i , m − i ) A ( n − i − 1 , m − i − 1 ) = n × ( n − 1 ) × ( n − 2 ) × ⋯ × ( n − m + 1 ) \begin{aligned} A(n,m) &= \prod_{i=0}^{m-1} a_{n-i} \\ & = \prod_{i=0}^{m-1} \frac{A(n-i,m-i)}{A(n-i-1, m-i-1)} \\ & = n \times (n-1) \times (n-2) \times \cdots \times (n-m+1) \end{aligned} A(n,m)=i=0m1ani=i=0m1A(ni1,mi1)A(ni,mi)=n×(n1)×(n2)××(nm+1)

定义

​ 从 n n n个不同元素中,任取 m ( m ≤ n ; m , n ∈ N + ) m(m≤n;m,n \in N^+) m(mn;m,nN+)个不同的元素按照一定的顺序排成一列,叫做从 n n n个不同元素中取出 m m m个元素的一个排列

​ 从 n n n个不同元素中取出 m ( m ≤ n ) m(m≤n) m(mn)个元素的所有排列的个数,叫做从 n n n个不同元素中取出 m m m个元素的排列数。符号记为 A n m ‾ 或 A ( n , m ) \underline{A_n^m}或A(n,m) AnmA(n,m)【中】;   n P m 或 n P m ‾ 或 P ( n , m ) 或 P m n ~\underline{_nP_m或^nP_m}或P(n,m)或P_m^n  nPmnPmP(n,m)Pmn【欧美】 (n permute m)。

​ 特别地,当 n = m n=m n=m时,所有的排列情况叫全排列,符号记为:
A n n = n ! = ∏ i = 1 n i A_n^n = n!=\prod_{i=1}^n i Ann=n!=i=1ni
​ 于是, A n m = n ! ( n − m ) ! A_n^m = \frac {n!}{(n-m)!} Anm=(nm)!n! 。由此规定, 0 ! = 1 0!=1 0!=1


组合 Combination

由来

n n n个不同物品放入 m m m个无序位置 ( n ≥ m ; n , m ∈ N + ) (n \ge m;n,m\in N^+) (nm;n,mN+),有多少种放法。

思路1:位置无序,则该问题等价于" n n n个不同物品中选出 m m m个物品,有多少种选法 “。这样想,排列的问题就相当于” n n n个不同物品中选出 m m m个物品,对这 m m m个物品进行全排列 ",我们可以就这个等价关系为突破口求解该问题。

  • 由组合可推排列,得:
    C ( n , m ) ⋅ A m m = A n m C ( n , m ) = A n m A m m C(n,m) \cdot A_m^m = A_n^m \\ C(n,m) = \frac {A_n^m}{A_m^m} C(n,m)Amm=AnmC(n,m)=AmmAnm

    C ( x , y ) C(x,y) C(x,y)代表 x x x个不同物品中选出 y y y个物品的总方法数。

    因此我们可推:
    C ( n , m ) = n ! ( n − m ) ! ⋅ m ! C(n,m) = \frac{n!}{(n-m)! \cdot m!} C(n,m)=(nm)!m!n!由此我们规定,
    i f   y = 0 , ∀ x ∈ N , C ( x , 0 ) = 1 if~y=0,\forall x \in N,C(x,0)=1 if y=0xN,C(x,0)=1

定义

​ 从 n n n个不同元素中,任取 m ( m ≤ n ) m(m≤n) m(mn)个元素并成一组,叫做从 n n n个不同元素中取出 m m m个元素的一个组合

​ 从 n n n个不同元素中取出 m ( m ≤ n ) m(m≤n) m(mn)个元素的所有组合的个数,叫做从 n n n个不同元素中取出 m m m个元素的组合数。符号记为 C n m ‾ 或 C ( n , m ) \underline{C_n^m}或C(n,m) CnmC(n,m)【中】;   n C m 或 n C m ‾ 或 C ( n , m ) 或 C m n 或 ( n m ) ‾ ~\underline{_nC_m或^nC_m}或C(n,m)或C_m^n或\underline{\begin{pmatrix} n \\ m \\ \end{pmatrix}}  nCmnCmC(n,m)Cmn(nm)【欧美】 读作 n   c h o o s e   m n~choose~m n choose m

​ 所以特别地, C n 0 = 1 C_n^0=1 Cn0=1


运算性质

组合公式Ⅰ

C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnnm

  • 当我们思考" n n n个物品中选出 m m m个物品 “时,事实上,这个问题等价于” n n n个物品中挑出 n − m n-m nm个物品 ":
    C n m ≡ C n n − m C_n^m \equiv C_n^{n-m} CnmCnnm

  • 根据组合计算法则 C n m = A n m A m m = n ! ( n − m ) !   m ! C_n^m = \frac{A_n^m}{A_m^m} = \frac{n!}{(n-m)! ~m!} Cnm=AmmAnm=(nm)! m!n!
    C n n − m = A n n − m A n − m n − m = n ! [ n − ( n − m ) ] !   ( n − m ) ! = n ! m !   ( n − m ) ! \begin{aligned} C_n^{n-m} &= \frac{A_n^{n-m}}{A_{n-m}^{n-m}} \\ &= \frac{n!}{[n-(n-m)]!~(n-m)!} \\ &= \frac{n!}{m!~(n-m)!} \end{aligned} Cnnm=AnmnmAnnm=[n(nm)]! (nm)!n!=m! (nm)!n!所以, C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnnm

组合公式Ⅱ

C n m = C n − 1 m − 1 + C n − 1 m C_n^m = C_{n-1}^{m-1} + C_{n-1}^m Cnm=Cn1m1+Cn1m

  • 当我们确定一个物品 ( ( (假定为第 1 1 1个物品 ) ) )的选取状态,可将组合 C ( n , m ) C(n,m) C(n,m)分解成"第 1 1 1个物品选中"和"第 1 1 1个物品不选"两个部分:
    C n m = C n − 1 m − 1 + C n − 1 m C_n^m = C_{n-1}^{m-1} + C_{n-1}^m Cnm=Cn1m1+Cn1m
    当第 1 1 1个物品被选中,就从 n − 1 n-1 n1个物品中选 m − 1 m-1 m1个物品当第 1 1 1个物品不选,就从 n − 1 n-1 n1个物品中选 m m m个物品

  • 根据组合计算法则 C n m = A n m A m m = n ! ( n − m ) !   m ! C_n^m = \frac{A_n^m}{A_m^m} = \frac{n!}{(n-m)! ~m!} Cnm=AmmAnm=(nm)! m!n!
    C n − 1 m − 1 + C n − 1 m = A n − 1 m − 1 A m − 1 m − 1 + A n − 1 m A m m = ( n − 1 ) ! ( n − m ) !   ( m − 1 ) ! + ( n − 1 ) ! ( n − 1 − m ) !   m ! = ( n − 1 ) ! ⋅ m ( n − m ) !   m ! + ( n − 1 ) ! ⋅ ( n − m ) ( n − m ) !   m ! = ( n − 1 ) ! ⋅ ( m + n − m ) ( n − m ) !   m ! = n ! ( n − m ) !   m ! \begin{aligned} C_{n-1}^{m-1} + C_{n-1}^m &= \frac{A_{n-1}^{m-1}}{A_{m-1}^{m-1}} + \frac{A_{n-1}^m}{A_m^m} \\ &= \frac{(n-1)!}{(n-m)! ~(m-1)!} + \frac{(n-1)!}{(n-1-m)! ~m!} \\ &= \frac{(n-1)!\cdot m}{(n-m)! ~m!} + \frac{(n-1)!\cdot (n-m)}{(n-m)! ~m!} \\ &= \frac{(n-1)!\cdot (m + n-m)}{(n-m)! ~m!} \\ &= \frac{n!}{(n-m)! ~m!} \end{aligned} Cn1m1+Cn1m=Am1m1An1m1+AmmAn1m=(nm)! (m1)!(n1)!+(n1m)! m!(n1)!=(nm)! m!(n1)!m+(nm)! m!(n1)!(nm)=(nm)! m!(n1)!(m+nm)=(nm)! m!n!所以 C n m = C n − 1 m − 1 + C n − 1 m C_n^m = C_{n-1}^{m-1} + C_{n-1}^m Cnm=Cn1m1+Cn1m

组合公式Ⅲ

C n 0 + C n 1 + C n 2 + ⋯ + C n n = 2 n C_n^0 + C_n^1 + C_n^2 + \cdots + C_n^n = 2^n Cn0+Cn1+Cn2++Cnn=2n

  • (方法一)
    根据组合公式Ⅱ C n m = C n − 1 m + C n − 1 m − 1   ( 0 < m < n , m ∈ N ) C_n^m = C_{n-1}^m + C_{n-1}^{m-1}~(0<m<n,m\in N) Cnm=Cn1m+Cn1m1 (0<m<n,mN) C n 0 = C n − 1 0 C_n^0 = C_{n-1}^0 Cn0=Cn10 C n n = C n − 1 n − 1 C_n^n = C_{n-1}^{n-1} Cnn=Cn1n1,可推出:
    ∑ i = 0 n C n i = C n 0 + ( ∑ i = 0 n − 2 C n − 1 i + C n − 1 i + 1 ) + C n n = C n − 1 0 + ( C n − 1 0 + C n − 1 1 ) + ⋯ + ( C n − 1 n − 2 + C n − 1 n − 1 ) + C n − 1 n − 1 = 2   ∑ i = 0 n − 1 C n − 1 i \begin{aligned} \sum_{i=0}^n C_n^i & = C_n^0 + \left( \sum_{i=0}^{n-2} C_{n-1}^i + C_{n-1}^{i+1} \right) + C_n^n \\ &= C_{n-1}^0 + (C_{n-1}^0+C_{n-1}^1) + \cdots + (C_{n-1}^{n-2}+C_{n-1}^{n-1}) + C_{n-1}^{n-1} \\ &= 2~\sum_{i=0}^{n-1} C_{n-1}^i \end{aligned} i=0nCni=Cn0+(i=0n2Cn1i+Cn1i+1)+Cnn=Cn10+(Cn10+Cn11)++(Cn1n2+Cn1n1)+Cn1n1=2 i=0n1Cn1i f ( n ) = ∑ i = 0 n C n i f(n) = \sum_{i=0}^n C_n^i f(n)=i=0nCni,则有 f ( n ) = 2 f ( n − 1 ) ⇒ f ( n ) f ( n − 1 ) = 2 f(n) = 2f(n-1) \Rightarrow \frac{f(n)}{f(n-1)}=2 f(n)=2f(n1)f(n1)f(n)=2,则
    f ( n ) = f ( 0 ) ∏ i = 1 n f ( n + 1 − i ) f ( n − i ) = 2 n f ( 0 ) f(n) = f(0)\prod_{i=1}^n \frac{f(n+1-i)}{f(n-i)} =2^nf(0) f(n)=f(0)i=1nf(ni)f(n+1i)=2nf(0)因为 f ( 0 ) = C 0 0 = 1 f(0) = C_0^0 = 1 f(0)=C00=1,于是等式得证。

  • (方法二)
    我们找到多项式 p ( x ) = ( x + 1 ) n p(x)=(x+1)^n p(x)=(x+1)n,并有:
    p ∗ ( x ) = ∏ i = 1 n ( x i + 1 ) p^*(x)=\prod_{i=1}^{n} (x_i + 1) p(x)=i=1n(xi+1)假设 p ( x ) p(x) p(x)展开式为:
    p ( x ) = ∑ i = 0 n a i x i p(x) = \sum_{i=0}^n a_i x^i p(x)=i=0naixi​根据组合原理,则 p ( x ) p(x) p(x) 展开式中 k k k 次项 x k x^k xk 对应 p ∗ ( x ) p^*(x) p(x) 中的项为 x i 1 x i 2 ⋯ x i k ( i m ≤ n , i m ∈ N + ) x_{i_1}x_{i_2}\cdots x_{i_k} (i_m\le n,i_m \in N^+) xi1xi2xik(imn,imN+),即等价于从 { x 1 , x 2 , ⋯   , x n } \{x_1,x_2,\cdots,x_n\} {x1,x2,,xn}中选出 k k k个元素相乘。所以, p ∗ ( x ) p^*(x) p(x)中集合 { x i 1 x i 2 ⋯ x i k ∣ i ≤ n , i ∈ N + , } \{x_{i_1}x_{i_2}\cdots x_{i_k} | i\le n,i \in N^+,\} {xi1xi2xikin,iN+,}所包含的元素个数,就对应于 p ( x ) p(x) p(x)展开式中的 k k k次项系数,相当于从 n n n个相异元素中选出 k k k个元素的方法数: C n k C_n^k Cnk

    ​于是,我们可得:
    ( x + 1 ) n = ∑ i = 0 n C n i x i (x+1)^n = \sum_{i=0}^n C_n^i x^i (x+1)n=i=0nCnixi x = 1 x=1 x=1,则可得系数和:
    ∑ i = 0 n C n i = 2 n \sum_{i=0}^n C_n^i = 2^n i=0nCni=2n等式得证。

组合公式Ⅳ

C m m + C m + 1 m + ⋯ + C n m = C n + 1 m + 1 C_m^m + C_{m+1}^m + \cdots + C_n^m = C_{n+1}^{m+1} Cmm+Cm+1m++Cnm=Cn+1m+1

  • 根据组合公式Ⅱ C n i = C n − 1 i − 1 + C n − 1 i C_n^i = C_{n-1}^{i-1} + C_{n-1}^i Cni=Cn1i1+Cn1i

    C n m = f ( n , m ) C_n^m = f(n, m) Cnm=f(n,m),则
    { f ( n , m ) = f ( n − 1 , m ) + f ( n − 1 , m − 1 ) f ( n − 1 , m ) = f ( n − 2 , m ) + f ( n − 2 , m − 1 ) ⋯ f ( m + 1 , m ) = f ( m , m ) + f ( m , m − 1 ) = f ( m − 1 , m − 1 ) + f ( m , m − 1 ) \left\{ \begin{aligned} f(n,m) &= f(n-1,m) + f(n-1, m-1) \\ f(n-1,m) &= f(n-2,m) + f(n-2, m-1)\\ &\cdots \\ f(m+1,m) &= f(m,m) + f(m, m-1) = f(m-1, m-1) + f(m, m-1) \\ \end{aligned} \right. f(n,m)f(n1,m)f(m+1,m)=f(n1,m)+f(n1,m1)=f(n2,m)+f(n2,m1)=f(m,m)+f(m,m1)=f(m1,m1)+f(m,m1)辗转代换可得:
    f ( n , m ) = ∑ i = 0 n − m f ( m − 1 + i , m − 1 ) = ∑ i = 0 n − m C m − 1 + i m − 1 \begin{aligned} f(n,m) &= \sum_{i=0}^{n-m} f(m-1+i, m-1) \\ &= \sum_{i=0}^{n-m} C_{m-1+i}^{m-1} \end{aligned} f(n,m)=i=0nmf(m1+i,m1)=i=0nmCm1+im1
    C n m = C n − 1 m − 1 + C n − 2 m − 1 + ⋯ + C m − 1 m − 1 C_n^m = C_{n-1}^{m-1} + C_{n-2}^{m-1} + \cdots + C_{m-1}^{m-1} Cnm=Cn1m1+Cn2m1++Cm1m1等价于所证等式。

组合公式Ⅴ

∑ i = 0 k C n i   C m k − i = C n + m k \sum_{i=0}^k C_n^i ~C_m^{k-i} = C_{n+m}^k i=0kCni Cmki=Cn+mk

  • 有两堆不同物品,一堆数量为 n n n,另一堆数量为 m m m ∀ s ≤ k , s ∈ N \forall s\le k,s\in N sk,sN,当从这两堆物品中的一堆选取 s s s个物品,就从另一堆选取 k − s k-s ks个物品的总方法数,等价于从一堆数量为 n + m n+m n+m的相异物品中选出 k k k个物品的方法数

  • (归纳法)

    ①当 k = 0 或 1 k=0或1 k=01时,显然结论成立;

    ②假设结论在 k = p − 1 k=p-1 k=p1时成立,则当   k = p   ~k=p~  k=p 
    ∑ i = 0 p C n i   C m p − i = C n p C m 0 + ∑ i = 0 p − 1 C n i ( C m − 1 p − 1 − i + C m − 1 p − i ) = C n p C m 0 + ∑ i = 0 p − 1 C n i C m − 1 p − i + ∑ i = 0 p − 1 C n i C m − 1 p − 1 − i ‾ ( 根据假设,可化简 ) = C n p C m − 1 0 + ∑ i = 0 p − 1 C n i C m − 1 p − i + C n + m − 1 p − 1 ‾ = ∑ i = 0 p C n i C m − 1 p − i + C n + m − 1 p − 1 \begin{aligned} \sum_{i=0}^p C_n^i ~C_m^{p-i} &= C_n^pC_m^0 + \sum_{i=0}^{p-1} C_n^i(C_{m-1}^{p-1-i}+C_{m-1}^{p-i}) \\ &= C_n^p C_m^0 + \sum_{i=0}^{p-1} C_n^iC_{m-1}^{p-i} + \underline{\sum_{i=0}^{p-1} C_n^iC_{m-1}^{p-1-i}}(根据假设,可化简) \\ &= C_n^p C_{m-1}^0 + \sum_{i=0}^{p-1} C_n^iC_{m-1}^{p-i} + \underline{C_{n+m-1}^{p-1}} \\ &= \sum_{i=0}^{p} C_n^iC_{m-1}^{p-i} + C_{n+m-1}^{p-1} \end{aligned} i=0pCni Cmpi=CnpCm0+i=0p1Cni(Cm1p1i+Cm1pi)=CnpCm0+i=0p1CniCm1pi+i=0p1CniCm1p1i(根据假设,可化简)=CnpCm10+i=0p1CniCm1pi+Cn+m1p1=i=0pCniCm1pi+Cn+m1p1由此可推得,
    ∑ i = 0 p C n i   C m p − i = ∑ i = 0 p C n i C p p − i + ∑ i = n + p n + m − 1 C i p − 1 (1) \begin{aligned} \sum_{i=0}^p C_n^i ~C_m^{p-i} = \sum_{i=0}^{p} C_n^iC_p^{p-i} + \sum_{i=n+p}^{n+m-1} C_i^{p-1} \end{aligned} \tag{1} i=0pCni Cmpi=i=0pCniCppi+i=n+pn+m1Cip1(1)同理,
    ∑ i = 0 p C n i C p p − i = C n 0 C p p + ∑ i = 1 p ( C n − 1 i + C n − 1 i − 1 ) C p p − i = C n 0 C p p + ∑ i = 1 p C n − 1 i C p p − i + ∑ i = 1 p C n − 1 i − 1 C p p − i = C n − 1 0 C p p + ∑ i = 1 p C n − 1 i C p p − i + ∑ i = 0 p − 1 C n − 1 i C p p − 1 − i ‾ ( 根据假设,可化简 ) = ∑ i = 0 p C n − 1 i C p p − i + C n + p − 1 p − 1 ‾ \begin{aligned} \sum_{i=0}^{p} C_n^iC_p^{p-i} &= C_n^0C_p^p + \sum_{i=1}^{p} (C_{n-1}^i + C_{n-1}^{i-1})C_p^{p-i} \\ &= C_n^0C_p^p + \sum_{i=1}^{p}C_{n-1}^iC_p^{p-i} + \sum_{i=1}^pC_{n-1}^{i-1}C_p^{p-i} \\ &= C_{n-1}^0C_p^p + \sum_{i=1}^{p}C_{n-1}^iC_p^{p-i} + \underline{\sum_{i=0}^{p-1}C_{n-1}^iC_p^{p-1-i}} (根据假设,可化简) \\ &= \sum_{i=0}^{p}C_{n-1}^iC_p^{p-i} + \underline{C_{n+p-1}^{p-1}} \end{aligned} i=0pCniCppi=Cn0Cpp+i=1p(Cn1i+Cn1i1)Cppi=Cn0Cpp+i=1pCn1iCppi+i=1pCn1i1Cppi=Cn10Cpp+i=1pCn1iCppi+i=0p1Cn1iCpp1i(根据假设,可化简)=i=0pCn1iCppi+Cn+p1p1由此可推得,
    ∑ i = 0 p C n i C p p − i = ∑ i = 0 p C p i C p p − i + ∑ i = 2 p n + p − 1 C i p − 1 (2) \begin{aligned} \sum_{i=0}^{p} C_n^iC_p^{p-i} = \sum_{i=0}^{p}C_p^iC_p^{p-i} + \sum_{i=2p}^{n+p-1} C_i^{p-1} \\ \end{aligned} \tag{2} i=0pCniCppi=i=0pCpiCppi+i=2pn+p1Cip1(2)根据假设,可得
    ∑ i = 0 p − 1 C p i   C p − 1 p − 1 − i = C 2 p − 1 p − 1 \sum_{i=0}^{p-1} C_p^i ~C_{p-1}^{p-1-i} = C_{2p-1}^{p-1} i=0p1Cpi Cp1p1i=C2p1p1则有
    ∑ i = 0 p C p i C p p − i = 2 C p 0 C p p + ∑ i = 1 p − 1 C p i ( C p − 1 p − i + C p − 1 p − 1 − i ) = 2 C p 0 C p p + ∑ i = 1 p − 1 C p i C p − 1 p − i + ∑ i = 1 p − 1 C p i C p − 1 p − 1 − i = C p 0 C p p + ∑ i = 1 p − 1 C p − 1 i C p p − i ‾ ( 变形以合并 ) + C p 0 C p − 1 p − 1 + ∑ i = 1 p − 1 C p i C p − 1 p − 1 − i ‾ ( 合并 ) = C p − 1 0 C p p + ∑ i = 1 p − 1 C p − 1 i C p p − i ‾ ( 合并 ) + ∑ i = 0 p − 1 C p i   C p − 1 p − 1 − i ‾ = ∑ i = 0 p − 1 C p − 1 i C p p − i + C 2 p − 1 p − 1 \begin{aligned} \sum_{i=0}^{p}C_p^iC_p^{p-i} &= 2C_p^0C_p^p + \sum_{i=1}^{p-1}C_p^i(C_{p-1}^{p-i} + C_{p-1}^{p-1-i}) \\ &= 2C_p^0C_p^p + \sum_{i=1}^{p-1}C_p^iC_{p-1}^{p-i} + \sum_{i=1}^{p-1}C_p^iC_{p-1}^{p-1-i} \\ &= C_p^0C_p^p + \underline{\sum_{i=1}^{p-1} C_{p-1}^iC_p^{p-i}}(变形以合并) + \underline{C_p^0C_{p-1}^{p-1} + \sum_{i=1}^{p-1}C_p^iC_{p-1}^{p-1-i}}(合并) \\ &= \underline{C_{p-1}^0C_p^p + \sum_{i=1}^{p-1} C_{p-1}^iC_p^{p-i}}(合并) + \underline{\sum_{i=0}^{p-1} C_p^i ~C_{p-1}^{p-1-i}} \\ &= \sum_{i=0}^{p-1} C_{p-1}^iC_p^{p-i} + C_{2p-1}^{p-1} \end{aligned} i=0pCpiCppi=2Cp0Cpp+i=1p1Cpi(Cp1pi+Cp1p1i)=2Cp0Cpp+i=1p1CpiCp1pi+i=1p1CpiCp1p1i=Cp0Cpp+i=1p1Cp1iCppi(变形以合并)+Cp0Cp1p1+i=1p1CpiCp1p1i(合并)=Cp10Cpp+i=1p1Cp1iCppi(合并)+i=0p1Cpi Cp1p1i=i=0p1Cp1iCppi+C2p1p1同理,可推得
    ∑ i = 0 p C p i C p p − i = C 0 0 C p p + ∑ i = p 2 p − 1 C i p − 1 = C p − 1 p − 1 + ∑ i = p 2 p − 1 C i p − 1 = ∑ i = p − 1 2 p − 1 C i p − 1 (3) \begin{aligned} \sum_{i=0}^{p}C_p^iC_p^{p-i} &= C_0^0C_p^p + \sum_{i=p}^{2p-1} C_i^{p-1} \\ &= C_{p-1}^{p-1} + \sum_{i=p}^{2p-1} C_i^{p-1} \\ &= \sum_{i=p-1}^{2p-1} C_i^{p-1} \\ \end{aligned} \tag{3} i=0pCpiCppi=C00Cpp+i=p2p1Cip1=Cp1p1+i=p2p1Cip1=i=p12p1Cip1(3)结合 ( 1 ) ( 2 ) ( 3 ) (1)(2)(3) (1)(2)(3)式,即
    ∑ i = 0 p C n i   C m p − i = ∑ i = p − 1 n + m − 1 C i p − 1 = C p − 1 p − 1 + C p p − 1 + ⋯ + C n + m − 1 p − 1 \begin{aligned} \sum_{i=0}^p C_n^i ~C_m^{p-i} &= \sum_{i=p-1}^{n+m-1} C_i^{p-1} \\ &= C_{p-1}^{p-1} + C_p^{p-1} + \cdots + C_{n+m-1}^{p-1} \end{aligned} i=0pCni Cmpi=i=p1n+m1Cip1=Cp1p1+Cpp1++Cn+m1p1根据组合公式Ⅳ,得
    ∑ i = 0 p C n i   C m p − i = C n + m p \sum_{i=0}^p C_n^i ~C_m^{p-i} = C_{n+m}^p i=0pCni Cmpi=Cn+mp于是,结论得证。

组合公式Ⅴ的推广(1)

∑ i = 0 m C m i   C m m − i = C m − 1 m − 1 + C m m − 1 + ⋯ + C 2 m − 1 m − 1 = C 2 m m \sum_{i=0}^m C_m^i ~C_m^{m-i} = C_{m-1}^{m-1} + C_m^{m-1} + \cdots + C_{2m-1}^{m-1} = C_{2m}^m i=0mCmi Cmmi=Cm1m1+Cmm1++C2m1m1=C2mm

  • 由组合公式Ⅴ,我们显然可得
    ∑ i = m n C i m C i m − i = C 2 m m \sum_{i=m}^{n} C_i^mC_i^{m-i} = C_{2m}^m i=mnCimCimi=C2mm由组合公式Ⅳ,可得
    C 2 m m = C m − 1 m − 1 + C m m − 1 + ⋯ + C 2 m − 1 m − 1 C_{2m}^m = C_{m-1}^{m-1} + C_m^{m-1} + \cdots + C_{2m-1}^{m-1} C2mm=Cm1m1+Cmm1++C2m1m1等式得证。

组合公式Ⅴ的推广(2)

∑ a 1 + a 2 + ⋯ + a k = k , a i ∈ N C n 1 a 1 C n 2 a 2 ⋯ C n k a k = C n 1 + n 2 + ⋯ + n k k \sum_{a_1+a_2+\cdots+a_k=k,a_i\in N} C_{n_1}^{a_1}C_{n_2}^{a_2}\cdots C_{n_k}^{a_k} = C_{n_1+n_2+\cdots +n_k}^k a1+a2++ak=k,aiNCn1a1Cn2a2Cnkak=Cn1+n2++nkk

仅仅是根据组合公式Ⅴ的一个猜想,具体证明有待后续。


组合数的奇偶


物品分堆

n n n个相异物件分成 k k k堆,各堆物件数分别为   r 1 , r 2 , ⋯   , r k   ~r_1,r_2,\cdots,r_k~  r1,r2,,rk ,有多少种方法。

  • 由已知得   r 1 + r 2 + ⋯ + r k = n   ~r_1+r_2+\cdots+r_k=n~  r1+r2++rk=n ,先取
    C n r 1 C n − r 1 r 2 C n − r 1 − r 2 r 3 ⋯ C n − r 1 − r 2 − ⋯ − r k − 1 r k = n ( n − 1 ) ⋯ ( n − r 1 + 1 ) r 1 ! ⋅ ( n − r 1 ) ( n − r 1 − 1 ) ⋯ ( n − r 1 − r 2 + 1 ) r 2 ! ⋯ ( n − r 1 − ⋯ − r k − 1 ) ( n − r 1 − ⋯ − r k − 1 − 1 ) ⋯ 1 r k ! = n ! r 1 ! r 2 ! ⋯ r k ! = n ! ∏ i = 1 k r i ! C_n^{r_1} C_{n-r_1}^{r_2} C_{n-r_1-r_2}^{r_3} \cdots C_{n-r_1-r_2-\cdots-r_{k-1}}^{r_k} \\ = \frac{n(n-1)\cdots (n-r_1+1)}{r_1!} \cdot \frac{(n-r_1)(n-r_1-1)\cdots (n-r_1-r_2+1)}{r_2!} \cdots \frac{(n-r_1-\cdots-r_{k-1})(n-r_1-\cdots-r_{k-1}-1)\cdots 1}{r_k!} \\ = \frac{n!}{r_1! r_2! \cdots r_k!} = \frac{n!}{\prod_{i=1}^k r_i!} Cnr1Cnr1r2Cnr1r2r3Cnr1r2rk1rk=r1!n(n1)(nr1+1)r2!(nr1)(nr11)(nr1r2+1)rk!(nr1rk1)(nr1rk11)1=r1!r2!rk!n!=i=1kri!n!

循环排列

​ 从 n n n个元素中取出 m m m个元素的循环排列数 = A ( n , m ) m = n ! m ⋅ ( n − m ) !   =\frac{A(n,m)}{m}=\frac{n!}{m\cdot(n-m)!}~ =mA(n,m)=m(nm)!n!  n n n个元素被分成 k k k类,每类的个数分别是   n 1 , n 2 , ⋯   , n k   ~n_1,n_2,\cdots,n_k~  n1,n2,,nk  n n n个元素的全排列数 n ! n 1 ! × n 2 ! × ⋯ × n k ! \frac{n!}{n_1! \times n_2! \times \cdots \times n_k!} n1!×n2!××nk!n! k k k类元素,每类的个数无限,从中取出 m m m个元素的组合数为 C ( m + k − 1 , m ) C(m+k-1,m) C(m+k1,m)


错位排列

未完待续

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学:人类精神虐待(゚Д゚)ノ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值