最短路径算法学习笔记

step1:认识最短路径算法

四种常见的最短路径算法:

- 所有顶点间的最短路径算法 --- Floyd

- 单源最短路径算法 --- Dijkstra

- 判断负权回路最短路径算法 --- Bellman-Ford

- 带负权边最短路径算法 --- SPFA

最短路径:在带权有向图中 $A$ 点(源点)到 $B$ 点(终点)的多条路径中,寻找一条各边权值最小的路径,即**最短路径**。

step2Floyd

**求最短路径步骤**

- 初始时设置一个 n 阶矩阵,令其对角线元素为 0,若存在边 (v_i,v_j),则对应元素为权值;否则为正无穷。

- 逐步试着在原直接路径中添加中间顶点,若加入中间,后路径变短,则修改;否则维持原值。(DP 思想)。

- 所有顶点试探完毕,算法结束。

code

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N = 2e2 + 10;
double g[N][N];
int x[N], y[N];
int n, m, u, v, s, t;

void floyd() {
    for (int k = 1; k <= n; k++) {
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
            }
        }
    }
}

int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    memset(g, 127, sizeof(g));
    cin >> n;
    for (int i = 1; i <= n; i++) {
        cin >> x[i] >> y[i];        
    }
    cin >> m;
    while (m--) {
        cin >> u >> v;
        double dis = sqrt((x[u] - x[v]) * (x[u] - x[v]) + (y[u] - y[v]) * (y[u] - y[v]));
        g[u][v] = g[v][u] = dis;
    }
    floyd();
    cin >> s >> t;
    cout << fixed << setprecision(2) << g[s][t] << "\n";
    return 0;
}


step3Dijkstra

**基本思想**:

将图中所有顶点分成两组:已知确定最短路 $S$、尚未确定最短路 $V-S$不断从第 $2$ 组中选择路径长度最短的点放入第 $1$ 组并扩展。

若顶点序列 {V_0,V_1,......,V_n} 是从 V_0V_n 的最短路,则序列 {V_0,V_1,......,V_{n-1}} 必为从 V_0V_{n-1} 的最短路。

**其本质为:贪心算法,且只能用于正权图。**

可以用优先队列 priority_queue 和邻接表来优化。

code

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N = 1e4 + 10;
int h[N], vtx[2 * N], nxt[2 * N], wt[2 * N], idx;
int dis[N], pre[N], vis[N];
int n, m, s, t, tu, tv, tw;

struct node {
    int u, v, w;
    friend bool operator < (node a, node b) {
        if (a.w >= b.w) {
            return 1;
        } else {
            return 0;
        }
    }
};
priority_queue <node> q;

void addEdge(int a, int b, int c) {
    vtx[idx] = b;
    nxt[idx] = h[a];
    wt[idx] = c;
    h[a] = idx++;
}

void dijkstra(int s) {
    dis[s] = 0;
    node tmp;
    tmp.u = s;
    tmp.v = s;
    tmp.w = 0;
    q.push(tmp);
    while (!q.empty()) {
        tmp = q.top();
        q.pop();
        int nid = tmp.v;
        if (vis[nid] == 1) {
            continue;
        }
        vis[nid] = 1;
        int p = h[nid];
        while (p != -1) {
            if (vis[vtx[p]] == 0) {
                if (dis[nid] + wt[p] < dis[vtx[p]]) {
                    dis[vtx[p]] = dis[nid] + wt[p];
                    pre[vtx[p]] = nid;
                    tmp.u = nid;
                    tmp.v = vtx[p];
                    tmp.w = dis[vtx[p]];
                    q.push(tmp);
                }
            }
            p = nxt[p];
        }
    }
}
int main() {
    memset(h, -1, sizeof(h));
    cin >> n >> m >> s >> t;
    for (int i = 1; i <= n; i++) {
        dis[i] = 2147483647;
    }
    while (m--) {
        cin >> tu >> tv >> tw;
        if (tu != tv) {
            addEdge(tu, tv, tw);
        }
    }
    dijkstra(s);
    return 0;
} 

step4Bellman-Ford(不需要存图,只要存边)

**主要算法思想**:
算法基于动态规划,反复用已有的边来更新最短距离。

- 每次利用所有的边,更新所有的结点。

- 重复这种操作 n-1 次(n 为顶点个数)。如果更新了 n-1 次,仍然有顶点可以被更新,则表明存在负权环,最短路径不存在。

- 显然,Bellman-Ford 算法的时间复杂度为 O(n \times e),复杂度要比 Dijkstra 算法高得多。

**操作**:

- 记 d[u]d[v] 是源点到 uv 的距离,w[u][v]uv 的距离;

- 若 d[u]d[v] 满足 d[v] \ge d[u]+w[u][v],则 d[v] 的值更新成 d[u]+w[u][v]

- 反复利用上式对 d 数组进行操作,如果没有负权回路的话,应当会在 n-1 次操作之后结束。

- 如果存在负权回路,那么第 n 次操作时仍然会成功,这时最短路径为负无穷。

code

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N = 1e3 + 10;
int dis[N]; 
struct edge {
    int u, v, w; 
}e[2 * N];
int n, m, s, t;

void ford() {
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            if (dis[e[i].v] >= dis[e[i].u] + e[i].w) {
                dis[e[i].v] = dis[e[i].u] + e[i].w;
            }
        }
    }
}

int main() {
    cin >> n >> m >> s >> t;
    for (int i = 1; i <= n; i++) {
        dis[i] = 2147483647;
    } 
    for (int i = 1; i <= m; i++) {
        cin >> e[i].u >> e[i].v >> e[i].w;
    }
    dis[s] = 0;
    ford();
    return 0;
}


  • 8
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值