深度学习在地理信息行业的应用

深度学习在地理信息行业中广泛应用,如图像识别、图像分割和物体检测。随着模型深化和数据增益,图像识别能力提升。FCN革新图像分割,而RCNN、YOLO等推动物体检测技术进步。
摘要由CSDN通过智能技术生成

深度学习在地理信息行业的应用

机器学习的许多方法在过去即被提出,过去受限于硬件水平限制,应用不多。近些年随着硬件水平的提高,普通计算机的算力越来越强,机器学习尤其是深度学习在许多领域取得了非常好的成绩。首先是在对算力要求不是太高的自然语言处理领域,基于统计模型的算法击败了传统的专家系统。随着GPU的发展,大规模图形运算成为可能。深度学习方法随即应用到图形图像处理领域。

地理信息行业有海量的空间数据,在摄影测量,遥感,测绘等方面对图像处理有大量的需求。过去人们通过直方图变换,伸缩拉伸等方法进行图像处理,来改善图像质量,方便判读和决策。这种方法在目前看来,会损失一定信息并且效率不高。而深度学习在这些方面,可以大有作为。

1. 图像识别

深度学习在图像识别中的发展趋势

  1. 模型层次不断加深
    2012Alex获得ImageNet冠军,其所用的AlexNet5个卷积层3个pool层和2个全连接层
    2014年获得ImageNet的GoogleNet,使用了59个卷积层,16个pool层和2个全连接层。
    2016微软的ResultNet深度残差网络,用了152个层的构架。

  2. 模型结构日趋复杂
    传统的卷积神经网络都是简单的conv-pool-FC
    后来NIN用mlpconv代替传统的conv层(mlp实际上是卷积加传统的多层感知器)。这样做一方面降低过拟合程度提高模型的推广能力,另一方面为大规模并行训练提供非常有利的条件。

  3. 海量的标注数据和适当的数据扰动
    深度学习需要大量的数据,现有的图像数据不能满足需求,结合图像数据的特点&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值