深度学习在地理信息行业的应用
机器学习的许多方法在过去即被提出,过去受限于硬件水平限制,应用不多。近些年随着硬件水平的提高,普通计算机的算力越来越强,机器学习尤其是深度学习在许多领域取得了非常好的成绩。首先是在对算力要求不是太高的自然语言处理领域,基于统计模型的算法击败了传统的专家系统。随着GPU的发展,大规模图形运算成为可能。深度学习方法随即应用到图形图像处理领域。
地理信息行业有海量的空间数据,在摄影测量,遥感,测绘等方面对图像处理有大量的需求。过去人们通过直方图变换,伸缩拉伸等方法进行图像处理,来改善图像质量,方便判读和决策。这种方法在目前看来,会损失一定信息并且效率不高。而深度学习在这些方面,可以大有作为。
1. 图像识别
深度学习在图像识别中的发展趋势
模型层次不断加深
2012Alex获得ImageNet冠军,其所用的AlexNet5个卷积层3个pool层和2个全连接层
2014年获得ImageNet的GoogleNet,使用了59个卷积层,16个pool层和2个全连接层。
2016微软的ResultNet深度残差网络,用了152个层的构架。模型结构日趋复杂
传统的卷积神经网络都是简单的conv-pool-FC
后来NIN用mlpconv代替传统的conv层(mlp实际上是卷积加传统的多层感知器)。这样做一方面降低过拟合程度提高模型的推广能力,另一方面为大规模并行训练提供非常有利的条件。海量的标注数据和适当的数据扰动
深度学习需要大量的数据,现有的图像数据不能满足需求,结合图像数据的特点&