深度学习在地学领域的运用 --- 摘译自 Markus Reichstein 2019 Nature

本文摘译自 Markus Reichstein 2019年在Nature发表的文章,探讨了深度学习在地学领域的应用。研究指出,深度学习在地表覆盖分类、极端天气探测、遥感数据分析等方面取得显著成果,但也面临解译性不足、物理一致性问题、数据复杂性和有限标签等挑战。未来,深度学习与机理模型的融合将是关键,旨在提高模型的可信度、可解译性和不确定性估计,同时通过概率编程和可微分编程优化数据驱动和理论驱动的框架。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://www.nature.com/articles/s41586-019-0912-1
下一阶段,解决地球系统科学问题将采用混合模型 – 包含物理过程的模型和许多data-driven机器学习模型相结合。
地球系统数据满足"big data"的4V特征:volume, velocity, variety, and veracity.
未来的两项主要任务:
1)从海量数据中提取信息
2)发展模型从数据中学习更多(优于原先的数据同化方法)

Big data challenges in the geoscientific content
Part 1: 机器学习在地学领域的最新进展
最早采用神经网络和高分辨率卫星数据对地表覆盖类型和云进行分类;而后机器学习方法应用在地学和遥感问题中。而在过去几年,深度学习被用来挖掘数据的时空结构。
除分类问题外,机器学习在回归问题上的表现也很成功。对土壤性质和特征的预测,biogeophysical参数,这些相对静态。而机器学习也能学习动态的特征,比如用ANN预测CO 2 _{2}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值