传统基本图像处理方法:图像增强(灰度变换、直方图增强、空间域滤波、频率域滤波)、图像分割、图像配准等

图像处理设计主要有以下几种处理:图像增强(灰度变换、直方图增强、空间域滤波、频率域滤波)、图像分割、图像配准等等。

  1. 图像增强:

图像增强作为基本的图像处理技术,目的在于通过对图像进行加工使其比原始图像更适合于特定应用,即图像灰度增强是根据特定需要有目的进行。医学图像由于成像设备和获取条件等影响,可能会出现图像质量的退化:另外影像医生希望获得对比度高、细节丰富、可读性好的图像以降低阅片强度便于诊断。通过图像增强改善图像的视觉质量,让观察者能够看到更加直接、清晰、适于分析的信息。传统的图像灰度增强方法可分为空域法和频域法两大类。空域法图像灰度增强直接对图像中像素灰度值进行运算处理,如线性灰度变换、非线性灰度变换、直方图均衡化处理等。频域法图像灰度增强首先对图像进行频域变换,然后对各频谱成分进行相应操作,最后经过频域逆变换获得所需结果。任何一种图像灰度增强算法都只是在特定的场合下才可以达到较为满意的增强效果。

    • 灰度变换:
  1. 线性灰度变换:

是将原图像的灰度动态范围按线性关系扩展到指定范围或整个动态范围。

a、b为原图像所占用灰度级别的最小值和最大值,c、d为增强后的图像所占用灰度级别的最小值和最大值。

 

该方法实现简单,算法复杂度低,对于曝光不足或过度、成像设备的非线性、记录设备的动态范围太突等原因引起的图像对比度过低的情况,线性灰度增强将取得较好的灰度增强效果。

 

 

  1. 对数灰度变换:

对数变换的一般表达式为

 

其中,c为一个常数,r小于或等于0,。此种变换使一窄带低灰度输入图像值映射为一个宽带输出值。相对应的是输入灰度的高调整值。可以利用这种变换来扩展被压缩的高值图像中的暗像素。相对应的是反对数变换的调整值。一般对数函数的所有曲线都能完成图像灰度的扩散/压缩。事实上,对数函数有其重要特征,即在很大程度上压缩了图像像素值的动态范围,其应用的一个典型例子是傅里叶频谱,它的像素值具有很大的动态范围。

    • 直方图增强:

在图像处理中,一种最简单且实用的工具是图像的灰度直方图。通过图像灰度直方图的分布情况,可以大致判断一幅图像的质量。如果一幅图像的灰度直方图挤压在一个较小的灰度范围内,图像的灰度动态范围就小,图像的对比度就差,图像的质量也就不好。反之,图像的灰度动态范围大,图像的对比度就好。要改善图像的灰度动态范围小的问题,一个直观的想法就是修改图像的直方图。常用的修改直方图的方法主要有:灰度变换和直方图增强。灰度变换又称为对比度扩展与调整,它是一种逐像素点对图像进行变换的增强方法,一般是通过线性或非线性函数对图像的灰度进行逐点修改来实现图像增强的。直方图增强技术是一种通过改变图像的全部或局部对比度进行图像增强的技术,其典型处理方法之一就是直方图均衡化。直方图均衡化的思想是把原始图像中的像素灰度做某种映射变换,使变换后图像灰度的概率密度为均匀分布,即变换后的图像灰度级均匀,这意味着图像灰度的动态范围的增加,提高图像的对比度。

直方图均衡化方法有以下两个特点:

(a) 根据各灰度级别出现频率的大小,对各个灰度级别进行相应程度的增强,即各个级别之间的间距相应增大。因此,这种方法对于对比度较弱的图像进行处理是很有效的。

(b) 因为直方图是近似的概率密度函数,所以用离散灰度级作变换一般得不到完全平坦的结果。另外,变换后的灰度级可能会減少,这种现象叫做“简并”现象。由于简并现象的存在,处理后的灰度级总是要减少的,这是像素灰度有限的必然结果。由于上述原因,数字图像的直方图均衡只是近似的。

    • 空间域滤波:

空域滤波是在图像空间中借助模板进行邻域操作完成的,各种空域滤波器根据功能主要分成平滑滤波器和锐化滤波器两类。图像平滑的目的主要是消除图像中的噪声,而图像的锐化则是为了增强被模糊的细节,如图像的边缘等。因此,在图像增强中主要用到两类空间滤波器。

      1. 平滑滤波器:

平滑滤波器主要用来減弱或消除图像中的噪声成分,从而提高图像的信噪比。平滑滤波器类似于后面讲到的频域中的低通滤波器。因为高频分量对应图像中的区域边缘与噪声等灰度值具有较大、较快变化的部分,滤波器将噪声减弱或消除的同时,也会减弱图像的边缘信息。

  1. 均值滤波法:

这是一种在空间域对图像进行简单平滑处理,其原理就是用某像素邻域内的各点灰度值的平均值代替该像素的原值。这种处理可以减小图像灰度的“尖锐”变化。由于图像噪声一般为“尖锐”变换的白噪声,所以均值滤波一般用来处理图像中的噪声。一个典型的均值滤波器是它的各元素值相等,且各元素的和为 1。 另外一种均值滤波器,它采取加权平均的方式,即不同的掩膜元素具有不同的权值,从而突出了一些像素的重要性,处于掩膜中心位置的像素较距离掩膜中心较远的其他像素更重要。这样做可以在降低蝶声的同时,减轻平滑处理所带来的边缘信息模糊效应。均值滤波法的优点是容易实现对噪声的抑制,缺点是容易使目标轮廓变得模糊,而且会减弱有用的细节信息。

  1. 中值滤波法:

中值滤波法是一种非线性滤波。这种方法运算简单,对孤立噪声的平滑效果比均值滤波方法好,而且它能较好地保护图像边界,但是这种算法会使图像失掉细线和小块的目标区域。中值滤波实际上就是用一个含有奇数个像素的滑动窗口,将窗口的正中点的灰度值用窗口内各点的中值代替。例如,若窗口长度为 5,窗口中像素的灰度值分别为 80、90、 200、110、120。按从小到大排列,结果为 80、90、110、120、200,其中间位置上的值 为 110。于是原来窗口正中的灰度值 200

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值