转化率模型之转化数据延迟

前几天在公司内网上看见有同事在讨论《广告算法工程师的日常》这篇文章里面提到的A、B、C三位同学在实际的晋升中谁的优势更大,其实当时举这个例子,本意只是想说明广告算法工程师在迭代优化模型的过程中,要相信数据>特征>算法本身,在遇到问题的时候能够优先从数据以及特征层面考虑。至于说谁在晋升中优势更大,大家仁者见仁、智者见智哈。

 

好了,今天主要想和大家聊聊“刘西瓜”,话说这个刘大统领…;额,不好意思,串台了哈。言归正传,今天和大家讨论一下转化率模型中转化数据延迟的问题。这个问题无论是在浅层转化(如app安装、app激活、app注册等)或者深度转化(app付费)等场景下都是十分常见的。

 

0.什么是转化数据延迟问题

我们知道,在广告场景下,曝光发生后点击基本在很短时间内发生,而点击发生之后,转化有时候会有较长时间的延时,或许是几分钟,或许是几天,甚至一个月以上,所以点击率CTR的预估模型的训练数据基本是无偏的数据集,而转化率CVR预估模型的训练数据有可能是回流不完全的有偏数据,所以转化率CVR模型可能会因为转化延时问题而导致预估偏差,并且当实时更新模型时,由于实时数据中有偏样本更多,预估偏差会更严重;一般来说像前面讲到的浅层转化(app安装、激活、注册等)基本在1天内数据基本可以回传,而深度转化(app付费等)基本需要一周以上的时间回传数据。

 

1.转化数据延迟问题的常见解法

(1). 指数建模法,代表论文《Modeling Delayed Feedback in Display Advertising》,作者给出了一个指数分布的假设,对于未回流完全的样本,可以用指数分布进行约束;缺点是a.假设首先未必合理 b.对于有回流时间窗口的问题,需要进行时间窗的校准 c.对于大数据集是个挑战

(2). bias-adjusted建模,代表论文《Display Advertising: Estimating Conversion Probability Efficiently》,该方法的收敛速度快,NLL和bias都比较低;缺点是对于大数据集是个挑战

(3). 非参估计建模,代表论文《A Nonparametric Delayed Feedback Model for Conversion Rate Prediction》,该建模方式不对转化时间的分布做假设,更能模拟真实的分布;缺点是a.计算相当复杂 b.对于大数据集是个挑战

 

2.我们的做法

在讲我们的做法之前,大家可以回过头来看下《广告模型初探(三)》中提到的大规模离散DNN即SDNN模型,我们的转化延时模型就是根据该框架实现的。首先给出模型整体的架构图,分为两个部分,一个部分是转化率模型,另一个部分是回流率模型。

图片

根据我们的实际业务情况,一般数据会在5天之内回流95%以上,因此我们事先设定回流时间窗口为5天,我们最终的训练策略是对于a.回流完全的样本:同时更新转化率模型以及回流率模型 b.回流不完全的样本:只更新转化率模型。举个例子最近30天的训练数据,分为25天回流完全数据+5天回流不完全数据,此时转化率模型是使用30天的数据训练,而回流率模型仅仅使用25天的数据训练,转化率模型的结果会受到5天回流不完全数据的影响,此时回流率模型会作用于转化率模型之上,起到一个校正的作用。

 

在实际使用中,我们采用的是batch+delta的经典模型更新方式,即分为天级别模型训练以及小时级模型训练两块。在天级别模型训练阶段,我们每天会启动一个调度任务,生成softmax天级别回流模型(25天回流完全数据同时更新转化率模型和回流率模型,最近5天只更新转化率模型,回流率模型作用于转化率模型之上),存放在天级别hdfs的目录下;在小时级别模型训练阶段,每小时会启动一个调度任务,拉取天级别目录下面最新的模型,使用小时级的数据生成增量的模型,存放在小时级hdfs的目录下。当线上预估模块检测到小时级模型目录有模型更新时,便会自动拉取该模型推送到线上,用于线上的实时预估。

 

3.小结

本文主要介绍了刘西瓜(额,怎么还有call back)。本文主要给出了转化数据延时问题的定义,常见解法以及我们在实践中的做法。说到底转化数据延迟问题其实是模型的准确率与模型更新时效性的两方博弈,希望大家都能在具体的业务中找到一个平衡点。话不多说,上图

图片

欢迎大家关注计算广告那些事儿哈,除了原创文章之外,也会不定期和大家分享业内大牛的文章哈!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: MobileNet是一种在计算资源有限的移动设备上运行的轻量级神经网络模型。它由Google团队于2017年开发,并已成为移动端图像分类和目标检测领域的重要模型之一。 MobileNet的主要特点是高效的计算和内存使用,它通过深度可分离卷积(Depthwise Separable Convolution)来实现。深度可分离卷积将标准的卷积操作分成两个步骤:深度卷积和逐点卷积。在深度卷积中,每个输入通道会单独进行卷积操作,然后在逐点卷积中,使用1x1的卷积核将这些单独的结果进行融合。这种操作不仅大幅减少了计算量,还减小了模型的大小,使其更适用移动设备的计算资源限制。 MobileNet还通过使用全局平均池化层来减少了全连接层的数量。全局平均池化层将整个特征图池化为一个值,这个值代表了每个通道的平均激活程度。这种方式有助于减小模型的大小和复杂度,使得模型更快速、轻量级。 由于MobileNet具有较少的参数和计算量,因此在移动设备上运行时具有较低的延迟和较高的实时性。它适用于各种移动端图像任务,如图像分类、目标检测和语义分割等。同时,它在保持精度损失较小的情况下,相对于较大且复杂的模型,如VGG和ResNet等,具有更小的模型大小。 总之,MobileNet是一种被广泛应用于移动设备上的轻量级神经网络模型。它通过深度可分离卷积和全局平均池化等技术,实现了高效的计算和内存使用。在移动端图像任务中取得了良好的性能,成为移动设备上的重要模型之一。 ### 回答2: MobileNet是一种轻量级的卷积神经网络模型,专门设计用于在移动设备或嵌入式系统上进行图像识别和分类任务。它由Google团队于2017年提出,并在ImageNet Large Scale Visual Recognition Challenge比赛中取得了出色的成绩。 MobileNet采用了深度可分离卷积(Depthwise Separable Convolution)的结构,这种卷积核的设计使得网络具有更小的参数量和计算量,从而在资源有限的设备上实现高效的推理。其主要有两个模块:深度可分离卷积和全局平均池化。 深度可分离卷积模块将传统的标准卷积分为两个步骤:深度卷积和逐点卷积。深度卷积针对每个输入通道分别应用卷积核,而逐点卷积则是合并多个通道的输出。这种分离方式极大地减少了模型中的参数数量,提高了计算效率。 全局平均池化模块用于将卷积层的输出特征图进行降维,将高维的特征转化为低维的特征向量。这样能进一步减少参数数量,并且有助于提取更加抽象和稳定的特征,提高模型的泛化能力。 MobileNet模型具有多个版本,例如MobileNetV1、MobileNetV2和MobileNetV3,它们在网络结构和性能方面有所不同,但都遵循了轻量级的设计原则。 MobileNet模型不仅在计算资源有限的移动设备上表现出色,在一些对计算能力要求较高的应用场景,如实时图像处理和边缘计算等也得到了广泛应用。官方提供的训练好的MobileNet模型可以作为预训练模型,用于自定义任务的微调或迁移到其他数据集上进行训练,从而加速模型的开发和部署。 ### 回答3: MobileNet是一种轻量级的深度学习模型,由Google团队开发。它旨在解决在移动设备上运行时,计算资源有限的问题,同时保持较高的准确率。 MobileNet采用了一种称为深度可分离卷积(depthwise separable convolution)的新型卷积结构,将标准的卷积操作分解为两个步骤:深度卷积和逐点卷积。深度卷积主要用来捕捉特征的跨通道相关性,而逐点卷积用来通过1x1的卷积核进行特征混合和映射。这种结构减少了计算量和参数量,从而大大减小了模型的体积。 MobileNet具有高度的灵活性,可以通过调整超参数来平衡速度和准确率之间的折衷。通过改变模型宽度的倍数因子,可以控制模型中各层的通道数,从而调整模型的大小和速度。此外,还可以通过改变输入图像的分辨率来进一步减少计算量。 MobileNet的官方模型经过在大规模图像数据集上进行训练,具有较高的准确率。它可以用于多种任务,包括图像分类、目标检测和语义分割等。在移动设备上部署MobileNet模型,可以实现快速、准确的图像处理和分析,为用户带来更好的移动体验。 总之,MobileNet是一种轻量级的深度学习模型,通过深度可分离卷积结构和灵活的超参数调整,实现了在计算资源有限的移动设备上高效地运行。它的官方模型经过训练和优化,具有较高的准确率和广泛的应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值