强化学习之蒙特卡洛方法

MC 预测:状态值

  • 解决预测问题的算法会确定策略 \piπ 对应的值函数 v_\pivπ​(或 q_\piqπ​)。
  • 通过与环境互动评估策略 \piπ 的方法分为两大类别:
    • 在线策略方法使智能体与环境互动时遵守的策略 \piπ 与要评估(或改进)的策略相同。
    • 离线策略方法使智能体与环境互动时遵守的策略 bb(其中 b\neq\pib≠π)与要评估(或改进)的策略不同。
  • 状态 s\in\mathcal{S}s∈S 在某个阶段中的每次出现称为 ss 的一次经历
  • 有两种类型的蒙特卡洛 (MC) 预测方法(用于估算 v_\pivπ​):
    • 首次经历 MC 将 v_\pi(s)vπ​(s) 估算为仅在 ss 首次经历之后的平均回报(即忽略与后续经历相关的回报)。
    • 所有经历 MC 将 v_\pi(s)vπ​(s) 估算为 ss 所有经历之后的平均回报。

MC 预测:动作值

  • 状态动作对 s,as,a (s\in\mathcal{S},a\in\mathcal{A}s∈S,a∈A) 在某个阶段中的每次出现称为 s,as,a 的一次经历
  • 有两种类型的蒙特卡洛 (MC) 预测方法(用于估算 q_\piqπ​):
    • 首次经历 MC 将 q_\pi(s,a)qπ​(s,a) 估算为仅在 s,as,a 首次经历之后的平均回报(即忽略与后续经历相关的回报)。
    • 所有经历 MC 将 q_\pi(s,a)qπ​(s,a) 估算为 s,as,a 所有经历之后的平均回报。

广义策略迭代

  • 旨在解决控制问题的算法会通过与环境互动确定最优策略 \pi_*π∗​。
  • 广义策略迭代 (GPI) 是指通过交替地进行策略评估和和改进步骤搜索最优策略的广义方法。我们在这门课程中讲解的所有强化学习方法都可以归类为 GPI。

MC 控制:增量均值

  • (在此部分,我们推出了一个算法,该算法可以不断得出一系列数字的平均值。)

MC 控制:策略评估

  • (在此部分,我们修改了策略评估步骤,在每个互动阶段结束后更新值函数。)

MC 控制:策略改进

  • 如果对于每个状态 s\in\mathcal{S}s∈S,它保证会选择满足 a = \arg\max_{a\in\mathcal{A}(s)}Q(s,a)a=argmaxa∈A(s)​Q(s,a) 的动作 a\in\mathcal{A}(s)a∈A(s),则策略相对于动作值函数估值 QQ 来说是贪婪策略。(通常将所选动作称之为贪婪动作。)
  • 如果对于每个状态 s\in\mathcal{S}s∈S,策略相对于动作值函数估值 QQ 是 \epsilonϵ 贪婪策略。
    • 概率为 1-\epsilon1−ϵ 时,智能体选择贪婪动作,以及
    • 概率为 \epsilonϵ 时,智能体随机(均匀地)选择一个动作。

探索与利用

  • 所有强化学习智能体都面临探索-利用困境,即智能体必须在根据当前信息采取最优动作(利用)和需要获取信息以做出更好的判断(探索)之间找到平衡。
  • 为了使 MC 控制收敛于最优策略,必须满足有限状态下的无限探索贪婪算法 (GLIE) 条件:
    • 所有状态动作对 s, as,a(对于所有 s\in\mathcal{S}s∈S 和 a\in\mathcal{A}(s)a∈A(s))被经历无穷次,以及
    • 策略收敛于相对于动作值函数估值 QQ 来说是贪婪策略的策略。

MC 控制:常量 α

  • (在此部分,我们为常量 \alphaα MC 控制推出了一个算法,该算法使用了常量步长 \alphaα。)
  • 步长参数 \alphaα 必须满足 0 < \alpha \leq 10<α≤1。\alphaα 值越大,学习速度越快,但是如果 \alphaα 的值过大,可能会导致 MC 控制无法收敛于 \pi_*π∗​。

 

 

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
强化学习中的蒙特卡洛方法是一种model-free的学习方法,它不需要对环境的动态进行建模。蒙特卡洛方法是根据与环境进行交互的样本序列来估计值函数或者策略函数。 简单来说,蒙特卡洛方法通过多次实验得到在不同状态下的回报样本,然后利用这些样本来估计值函数或者策略函数。蒙特卡洛方法的核心思想是根据样本的平均回报来近似真实的值函数。 蒙特卡洛方法有多种算法,其中最简单的是MC Basic算法。MC Basic算法的核心步骤包括: 1. 首先,通过与环境进行交互来生成样本序列。在每个样本序列中,采取一系列的动作,并观察环境的反馈,包括奖励和下一个状态。 2. 接下来,根据样本序列计算每个状态的回报。回报是从当前状态开始,经历一系列的动作和环境的反馈后所获得的累计奖励。 3. 然后,利用回报样本来估计值函数。对于每个状态,将其对应的回报样本求平均值作为值函数的估计。 4. 最后,根据值函数来改进策略。根据估计的值函数,选择在每个状态下具有最高值的动作作为最优策略。 这样,通过多次实验和样本的平均回报,MC Basic算法可以逐渐学习到值函数和策略函数,并不断优化策略来实现更好的决策。 除了MC Basic算法,还有其他蒙特卡洛方法,如MC Exploring Starts和ϵ-Greedy算法。这些算法在具体实现上有所差异,但都基于蒙特卡洛方法的核心思想。 综上所述,蒙特卡洛方法是一种model-free的强化学习算法,通过样本序列来估计值函数或策略函数,从而实现更好的决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值