Hadoop是一个开源的分布式计算框架,被广泛应用于大数据处理和分析。它的核心设计目标是能够在成百上千台普通服务器上高效地存储和处理大规模数据集。本文将详细介绍Hadoop的分布式模式和服务器架构,并提供相应的源代码示例。
Hadoop分布式模式的核心思想是将大规模数据集划分为多个小的数据块,并将这些数据块分别存储在分布式文件系统(Hadoop Distributed File System,简称HDFS)的不同节点上。同时,Hadoop利用MapReduce编程模型将数据处理任务分解为多个子任务,并将这些子任务分布在集群中的不同节点上并行执行。这种分布式计算模式使得Hadoop能够充分利用集群中的计算资源,实现高速的数据处理和分析。
Hadoop的服务器架构包括主节点(NameNode)和多个从节点(DataNode)。主节点负责管理整个分布式文件系统,维护文件的元数据信息,并协调整个集群的数据存储和处理任务。从节点负责实际存储数据块,并执行由主节点分配的数据处理任务。
下面是一个简单的Hadoop分布式模式的示例代码:
import org.