EXTENDED LIGHTS OUT POJ - 1222 详解(高斯消元异或方程组,构造)

题目链接

题目大意

  给定一个5*6的0 1 矩阵,0代表灯灭,1代表灯亮,按下一个灯时,那个灯和上下左右附近的灯会随着那个灯往目前灯相反的状态改变。最后要使得所有灯灭。输出一个0 1矩阵表示所相应位置的灯按还是不按。

分析

  拿一个3*3的矩阵作为例子:
设灯的初始矩阵L,也就是初始的状态为
L = [ 1 0 0 0 1 0 0 0 0 ] L=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} L=100010000

  然后我们假设一个矩阵 X X X X ( i , j ) X(i,j) X(i,j)表示使得矩阵L变为0矩阵的情况下,位置i,j上的灯点不点击,1表示点击,0表示不点击。
  列出异或方程组:比如对于 ( 1 , 1 ) (1,1) (1,1)位置上的灯,列出如下一组方程:

( L [ 1 ] [ 1 ] ) x o r [ X ( 1 , 1 ) ∗ A ( 1 , 1 ) ] x o r [ X ( 1 , 2 ) ∗ A ( 1 , 2 ) ] x o r [ X ( 1 , 3 ) ∗ A ( 1 , 3 ) ] . . . x o r [ X ( 3 , 2 ) ∗ A ( 1 , 8 ) ] x o r [ X ( 3 , 3 ) ∗ A ( 1 , 9 ) ] = 0 \small (L[1][1])xor[X(1,1)∗A(1,1)]xor[X(1,2)∗A(1,2)]xor[X(1,3)∗A(1,3)]...xor[X(3,2)∗A(1,8)]xor[X(3,3)∗A(1,9)]=0 (L[1][1])xor[X(1,1)A(1,1)]xor[X(1,2)A(1,2)]xor[X(1,3)A(1,3)]...xor[X(3,2)A(1,8)]xor[X(3,3)A(1,9)]=0
两边同时异或上 L [ i ] [ j ] L[i][j] L[i][j]可得一个方程组:
[ X ( 1 , 1 ) ∗ A ( 1 , 1 ) ] x o r [ X ( 1 , 2 ) ∗ A ( 1 , 2 ) ] x o r [ X ( 1 , 3 ) ∗ A ( 1 , 3 ) ] . . . x o r [ X ( 3 , 2 ) ∗ A ( 1 , 8 ) ] x o r [ X ( 3 , 3 ) ∗ A ( 1 , 9 ) ] = L [ 1 ] [ 1 ] \small [X(1,1)∗A(1,1)]xor[X(1,2)∗A(1,2)]xor[X(1,3)∗A(1,3)]...xor[X(3,2)∗A(1,8)]xor[X(3,3)∗A(1,9)]=L[1][1] [X(1,1)A(1,1)]xor[X(1,2)A(1,2)]xor[X(1,3)A(1,3)]...xor[X(3,2)A(1,8)]xor[X(3,3)A(1,9)]=L[1][1]
其中

  • A(x,y)的意思是从上到下,从左到右,按下第y盏灯后,第x盏灯的状态有没有改变,有为1,没有为0。(也可以理解为按下第y盏灯后,对第x盏灯的状态有没有影响。)注意这个逻辑
  • L[i][j]表示位置(i,j)上的灯的状态。
  • X ( i , j ) X(i,j) X(i,j)的意思是位置(i,j)上的灯是按还是不按。

同理可以列出位置 ( 1 , 2 ) , ( 1 , 3 ) , ( 2 , 1 ) . . . (1,2),(1,3),(2,1)... (1,2),(1,3),(2,1)...上的灯方程组
[ X ( 1 , 1 ) ∗ A ( 2 , 1 ) ] x o r [ X ( 1 , 2 ) ∗ A ( 2 , 2 ) ] x o r [ X ( 2 , 3 ) ∗ A ( 1 , 3 ) ] . . . x o r [ X ( 3 , 2 ) ∗ A ( 2 , 8 ) ] x o r [ X ( 3 , 3 ) ∗ A ( 2 , 9 ) ] = L [ 1 ] [ 2 ] \small [X(1,1)∗A(2,1)]xor[X(1,2)∗A(2,2)]xor[X(2,3)∗A(1,3)]...xor[X(3,2)∗A(2,8)]xor[X(3,3)∗A(2,9)]=L[1][2] [X(1,1)A(2,1)]xor[X(1,2)A(2,2)]xor[X(2,3)A(1,3)]...xor[X(3,2)A(2,8)]xor[X(3,3)A(2,9)]=L[1][2]
[ X ( 1 , 1 ) ∗ A ( 3 , 1 ) ] x o r [ X ( 1 , 2 ) ∗ A ( 3 , 2 ) ] x o r [ X ( 2 , 3 ) ∗ A ( 3 , 3 ) ] . . . x o r [ X ( 3 , 2 ) ∗ A ( 3 , 8 ) ] x o r [ X ( 3 , 3 ) ∗ A ( 3 , 9 ) ] = L [ 1 ] [ 3 ] \small [X(1,1)∗A(3,1)]xor[X(1,2)∗A(3,2)]xor[X(2,3)∗A(3,3)]...xor[X(3,2)∗A(3,8)]xor[X(3,3)∗A(3,9)]=L[1][3] [X(1,1)A(3,1)]xor[X(1,2)A(3,2)]xor[X(2,3)A(3,3)]...xor[X(3,2)A(3,8)]xor[X(3,3)A(3,9)]=L[1][3]
. . . ... ...
  然后一直列到第9盏灯的方程组。可以发现矩阵 X ( i , j ) X(i,j) X(i,j)不相当于高斯消元中的未知数吗?用高斯消元的异或板子求解就行了。

A矩阵,也就是系数矩阵的构造

  见如下代码的注释

for (int i = 0; i < 3 i++)
{
	for (int j = 0; j < 3; j++)
	{
		int t = i * 3 + j;//位置(i,j)那盏灯的编号
		a[t][t] = 1;//自己按下肯定对自己有影响
		if(i>0)a[(i-1)*3+j][t]=1;//第t盏灯对上面的那盏所对应的编号有影响
		if(i<4)a[(i+1)*3+j][t]=1;//同理下面那盏
		if(j>0)a[i*3+j-1][t]=1;//左面那盏
		if(j<5)a[i*3+j-1][t]=1;//右面那盏
	}
}

Q&A

  为什么用异或?
  因为异或相当于不进位加法,被影响的0 1次数依次累加比模2更方便。

AC代码

类比到5*6的,就不难理解代码了

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <map>
#include <climits>
#include <cassert>
#define LL long long

using namespace std;
const int maxn = 100 + 10;

int a[maxn][maxn];  //增广矩阵
int x[maxn];        //解集

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

int lcm(int a, int b)
{
    return a / gcd(a, b) * b;
}

//高斯消元解方程组
//返回值-2表示有浮点数解,无整数解
//返回值-1表示无解,0表示有唯一解,大于0表示有无穷解,返回自由变元个数
//有equ个方程,var个变元
//增广矩阵行数[0, equ - 1]
//增广矩阵列数[0, var]
int gauss(int equ, int var)
{
    for (int i = 0; i <= var; i++)
    {
        x[i] = 0;
    }
    //转换为阶梯矩阵
    //col表示当前正在处理的这一列
    int col = 0;
    int row = 0;
    //maxR表示当前这个列中元素绝对值最大的行
    int maxRow;
    for (; row < equ && col < var; row++, col++)
    {
        //枚举当前正在处理的行
        //找到该col列元素绝对值最大的那行与第k行交换
        maxRow = row;
        for (int i = row + 1; i < equ; i++)
        {
            if (abs(a[maxRow][col]) < abs(a[i][col]))
            {
                maxRow = i;
            }
        }
        if (maxRow != row)
        {
            //与第row行交换
            for (int j = row; j < var + 1; j++)
            {
                swap(a[row][j], a[maxRow][j]);
            }
        }
        if (a[row][col] == 0)
        {
            //说明该col列第row行以下全是0,处理当前行的下一列
            row--;
            continue;
        }
        for (int i = row + 1; i < equ; i++)
        {
            //枚举要删的行
            if (a[i][col] != 0)
            {
                for (int j = col; j < var + 1; j++)
                {
                    ///
                    a[i][j] ^= a[row][j];
                }
            }
        }
    }
    for (int i = var - 1; i >= 0; i--)
    {
        x[i] = a[i][var];
        for (int j = i + 1; j < var; j++)
        {
            ///
            x[i] ^= (a[i][j] && x[j]);
        }
    }
    return 0;
}

int main()
{
    int ncase;
    int ca = 1;
    scanf("%d", &ncase);
    while (ncase--)
    {
        memset(a, 0, sizeof(a));
        for (int i = 0; i < 30; i++)
        {
            scanf("%d", &a[i][30]);
        }
        for (int i = 0; i < 5; i++)
        {
            for (int j = 0; j < 6; j++)
            {
                int t = i * 6 + j;
                a[t][t] = 1;
                if(i>0)a[(i-1)*6+j][t]=1;
                if(i<4)a[(i+1)*6+j][t]=1;
                if(j>0)a[i*6+j-1][t]=1;
                if(j<5)a[i*6+j+1][t]=1;
            }
        }
        gauss(30, 30);
        printf("PUZZLE #%d\n", ca++);
        for(int i = 0; i < 30; i++)
        {
            printf("%d", x[i]);
            if((i+1) % 6 == 0)
                printf("\n");
            else
                printf(" ");
        }
    }
    return 0;
}

如果有什么问题,欢迎留言🧐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值