YOLOV3 入门 (搭建环境 + 详细教学运行程序)

本文档详细介绍如何搭建基于GPU的深度学习环境,包括Anaconda、Cuda、Cudnn及Tensorflow-gpu的安装与配置,并提供版本对照表及错误排查指南。

首先声明这是我自己用于学习的总结文档,内容中有不妥之处欢迎大家批评指教。同时感谢以下引用博文博主的“慷慨解囊”,他们将自己的经验分享到社区为我们提供了帮助。

okay!让我们进入正文!

一、环境搭建部分

我采取的方案,一共需要安装四个环境

  1. Anaconda(我们需要的是这个IDE中的python库)
  2. Cuda
  3. Cudnn
  4. Tensorflow-gpu-x.x.x

需要注意的是:tensorflow不同版本对应的另外三个环境版本是有严格要求的 (如果版本不对应就会出现一系列问题,因此如果后期调试程序的时候出现报错,不妨检查一下自己的版本是否对应)

因此,我将tensorflow的对应版本对照表列出:请参考以下博客内容

https://blog.csdn.net/weixin_44560088/article/details/117457619?ops_request_misc=&request_id=&biz_id=102&utm_term=tensorflow-gpu2.5.0%E5%AF%B9%E5%BA%94cuda&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-.first_rank_v2_pc_rank_v29&spm=1018.2226.3001.4187

接下来是以上环境的安装教程,再次强调:如果按照上述步骤安装之后训练程序过程中报错,首先应该检查的是以上四个环境的版本是否匹配。

https://blog.csdn.net/weixin_44170512/article/details/103990592

如果不匹配,则可搜索关键词“某某某+ 降级到什么版本”或者“某某某+ 升级到什么版本”(当然,删除重装也是一种不错的选择)

除这些之外,我们还需要手动安装cv2库,csdn上搜索“如何安装cv2库即可”

二、训练部分

接下来我们进入正文、同时也是最有意思的部分。跟着这个视频来做即可:

https://www.bilibili.com/video/BV1r5411t7Db

good luck!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值