贝叶斯估计的理解及例子

大体上,统计学分为两个学派,一个是经典学派(又称频率学派),用的是总体信息和样本信息来处理参数的问题。另一个是贝叶斯学派,除了用的是同经典学派一样的总体信息和样本信息之外,还有先验信息。那么什么是先验信息呢?比如我们要了解全国人的平均身高,那么总体就是全国人的平均身高,样本就是从每个省里抽1万个人出来的平均身高,那么什么是先验信息呢?今年是2020年,我们可以考察之前的数据,比如2000年的全国人的平均身高,那么我们就能用2000年的全国人的平均身高作为一个参考,这个信息就叫做先验信息
贝叶斯估计的操作步骤
样本:
X 1 , ⋯ X n \boldsymbol{X}_1,\cdots \boldsymbol{X}_{\boldsymbol{n}} X1,Xn
的密度为:
f ( x ) \boldsymbol{f}\left( \boldsymbol{x} \right) f(x)
其是独立同分布,从同一个总体中抽出来的,并且总的的未知参数为 θ {\theta } θ,什么是未知参数呢?全国平均人的身高这个东西就叫做总体参数,此时我们并不知道这个参数,所以称其为未知参数 θ {\theta } θ
并且将先验的分布记为: π ( θ ) \boldsymbol{\pi }\left( \boldsymbol{\theta } \right) π(θ)
注意,我们的任务是要通过样本信息和先验信息来求得其后验信息、后验分布。
记:
h ( θ ∣ x ) = ∏ i = 1 n f ( x i , θ ) π ( θ ) \boldsymbol{h}\left( \boldsymbol{\theta }|\boldsymbol{x} \right) =\prod_{\boldsymbol{i}=1}^{\boldsymbol{n}}{\boldsymbol{f}\left( \boldsymbol{x}_{\boldsymbol{i}},\boldsymbol{\theta } \right)}\boldsymbol{\pi }\left( \boldsymbol{\theta } \right) h(θx)=i=1nf(xi,θ)π(θ)
上面的公式是求样本和参数的联合分布
再记:
m ( x ) = ∫ h ( θ ∣ x ) d x \boldsymbol{m}\left( \boldsymbol{x} \right) =\int{\boldsymbol{h}\left( \boldsymbol{\theta }|\boldsymbol{x} \right)}\boldsymbol{dx} m(x)=h(θx)dx
其被积区域就是 θ {\theta } θ的范围
那么后验密度 π ( θ ∣ x ) \boldsymbol{\pi }\left( \boldsymbol{\theta }|\boldsymbol{x} \right) π(θx)就为:
π ( θ ∣ x ) = h ( θ ∣ x ) m ( x ) \boldsymbol{\pi }\left( \boldsymbol{\theta }|\boldsymbol{x} \right) =\frac{\boldsymbol{h}\left( \boldsymbol{\theta }|\boldsymbol{x} \right)}{\boldsymbol{m}\left( \boldsymbol{x} \right)} π(θx)=m(x)h(θx)
其目的是求参数 θ {\theta } θ在样本信息条件下的后验分布,进而在该 θ {\theta } θ后验分布的基础上求 θ {\theta } θ得各种后验估计。
实际上贝叶斯估计就是在求出这个后验分布密度之后,根据这个密度函数求出他的期望。

下面举个例子:
例、设总体X服从二项分布,即X~B(N,p),且N已知,p为未知参数,p的先验分布为0到1的均匀分布,即U(0,1),现有n个样本: X 1 , ⋯   , X n \boldsymbol{X}_1,\cdots ,\boldsymbol{X}_{\boldsymbol{n}} X1,,Xn,求p的贝叶斯估计。
解:
步骤一:找出其密度,因为是二项分布,所以其密度为: p ( X = x ) = C N x p x ( 1 − p ) N − x \boldsymbol{p}\left( \boldsymbol{X}=\boldsymbol{x} \right) =\boldsymbol{C}_{\boldsymbol{N}}^{\boldsymbol{x}}\boldsymbol{p}^{\boldsymbol{x}}\left( 1-\boldsymbol{p} \right) ^{\boldsymbol{N}-\boldsymbol{x}} p(X=x)=CNxpx(1p)Nx
步骤二:求联合分布h,得 h ( X , θ ) = ∏ i = 1 n C N x i p x i ( 1 − p ) N − x i    × 1 \boldsymbol{h}\left( \boldsymbol{X},\boldsymbol{\theta } \right) =\prod_{\boldsymbol{i}=1}^{\boldsymbol{n}}{\boldsymbol{C}_{\boldsymbol{N}}^{\boldsymbol{x}_{\boldsymbol{i}}}\boldsymbol{p}^{\boldsymbol{x}_{\boldsymbol{i}}}\left( 1-\boldsymbol{p} \right) ^{\boldsymbol{N}-\boldsymbol{x}_{\boldsymbol{i}}}}\,\,\times 1 h(X,θ)=i=1nCNxipxi(1p)Nxi×1
(因为是0到1的均匀分布,所以先验分布为1)
步骤三:求后验密度
π ( θ , X ) = h ( X , θ ) ∫ h ( X , θ ) d θ \boldsymbol{\pi }\left( \boldsymbol{\theta },\boldsymbol{X} \right) =\frac{\boldsymbol{h}\left( \boldsymbol{X},\boldsymbol{\theta } \right)}{\int{\boldsymbol{h}\left( \boldsymbol{X},\boldsymbol{\theta } \right) \boldsymbol{d\theta }}} π(θ,X)=h(X,θ)dθh(X,θ)
这里的 θ {\theta } θ其实就是p,在 h ( X , θ ) \boldsymbol{h}\left( \boldsymbol{X},\boldsymbol{\theta } \right) h(X,θ) C N x i \boldsymbol{C}_{\boldsymbol{N}}^{\boldsymbol{x}_{\boldsymbol{i}}} CNxi是没有p的,所以分子分母可以约掉,得:
π ( θ , X ) = h ( X , θ ) ∫ h ( X , θ ) d θ = p ∑ X i ( 1 − p ) n N − ∑ X i ∫ 0 1 p ∑ X i ( 1 − p ) n N − ∑ X i d p \boldsymbol{\pi }\left( \boldsymbol{\theta },\boldsymbol{X} \right) =\frac{\boldsymbol{h}\left( \boldsymbol{X},\boldsymbol{\theta } \right)}{\int{\boldsymbol{h}\left( \boldsymbol{X},\boldsymbol{\theta } \right) \boldsymbol{d\theta }}}=\frac{\boldsymbol{p}^{\sum{\boldsymbol{X}_{\boldsymbol{i}}}}\left( 1-\boldsymbol{p} \right) ^{\boldsymbol{nN}-\sum{\boldsymbol{X}_{\boldsymbol{i}}}}}{\int_0^1{\boldsymbol{p}^{\sum{\boldsymbol{X}_{\boldsymbol{i}}}}\left( 1-\boldsymbol{p} \right) ^{\boldsymbol{nN}-\sum{\boldsymbol{X}_{\boldsymbol{i}}}}}\boldsymbol{dp}} π(θ,X)=h(X,θ)dθh(X,θ)=01pXi(1p)nNXidppXi(1p)nNXi
其中,分母可以凑成伽马函数:
∫ 0 1 p 1 + ∑ X i − 1 ( 1 − p ) n N − ∑ X i + 1 − 1 d p \int_0^1{\boldsymbol{p}^{1+\sum{\boldsymbol{X}_{\boldsymbol{i}}-1}}\left( 1-\boldsymbol{p} \right) ^{\boldsymbol{nN}-\sum{\boldsymbol{X}_{\boldsymbol{i}}+1-1}}}\boldsymbol{dp} 01p1+Xi1(1p)nNXi+11dp

= Γ ( 1 + ∑ X i ) Γ ( n N − ∑ X i + 1 ) Γ ( n N + 2 ) \frac{\boldsymbol{\varGamma }\left( 1+\sum{\boldsymbol{X}_{\boldsymbol{i}}} \right) \boldsymbol{\varGamma }\left( \boldsymbol{nN}-\sum{\boldsymbol{X}_{\boldsymbol{i}}+1} \right)}{\boldsymbol{\varGamma }\left( \boldsymbol{nN}+2 \right)} Γ(nN+2)Γ(1+Xi)Γ(nNXi+1)
将其带入 π ( θ , X ) \boldsymbol{\pi }\left( \boldsymbol{\theta },\boldsymbol{X} \right) π(θ,X)得:
π ( θ , X ) = Γ ( n N + 2 ) p ∑ X i ( 1 − p ) n N − ∑ X i Γ ( 1 + ∑ X i ) Γ ( n N − ∑ X i + 1 ) \boldsymbol{\pi }\left( \boldsymbol{\theta },\boldsymbol{X} \right) =\frac{\boldsymbol{\varGamma }\left( \boldsymbol{nN}+2 \right) \boldsymbol{p}^{\sum{\boldsymbol{X}_{\boldsymbol{i}}}}\left( 1-\boldsymbol{p} \right) ^{\boldsymbol{nN}-\sum{\boldsymbol{X}_{\boldsymbol{i}}}}}{\boldsymbol{\varGamma }\left( 1+\sum{\boldsymbol{X}_{\boldsymbol{i}}} \right) \boldsymbol{\varGamma }\left( \boldsymbol{nN}-\sum{\boldsymbol{X}_{\boldsymbol{i}}+1} \right)} π(θ,X)=Γ(1+Xi)Γ(nNXi+1)Γ(nN+2)pXi(1p)nNXi
步骤四:求得了后验密度,再求其期望,就得到了贝叶斯估计
故p的贝叶斯估计为: p ^ = 1 + ∑ X i n N + 2 \boldsymbol{\hat{p}}=\frac{1+\sum{\boldsymbol{X}_{\boldsymbol{i}}}}{\boldsymbol{nN}+2} p^=nN+21+Xi

  • 13
    点赞
  • 51
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值