OpenManus 是MetaGPT 团队推出的开源复刻版 Manus,提供无需邀请码的 AlAgent。基于模块化设计,支持多种语言模型和工具链,能执行代码、处理文件、搜索网络信息等复杂任务。现在对OpenManus做一个简单的调研,了解其特点,看是否能运用在日常工作中,提升工作效率。
OpenManus 与 Manus 模型介绍对比
OpenManus 与 Manus 均为基于多智能体(Multi-Agent)架构的 AI Agent 产品,旨在通过任务拆解、工具调用(如网络搜索、代码执行等)实现复杂任务自动化。
1. 开源性与使用门槛
- Manus:闭源产品,需邀请码才能体验,用户无法直接访问或修改底层代码,技术架构不透明。
- OpenManus:完全开源(GitHub 项目),无使用门槛,支持本地部署,代码公开可查,开发者可自由修改、扩展(如集成 Claude、Qwen 等模型)。
2. 技术架构与实现
- Manus:
-
- 依赖自研的规划与后训练技术,宣称在 GALA Benchmark 中超越 OpenAI 的 Deep Research,达到 SOTA(最优水平)。
- 底层整合大模型(如 Claude)、多智能体协作及工具链(如 Browser Use、Computer Use),但具体技术细节未公开。
- 将复杂任务(如“制作旅行攻略”)自动拆解为子任务(如“搜索景点”“生成表格”),并调用不同工具完成。
- OpenManus:
-
- 基于 MetaGPT 团队的技术沉淀(2023 年开源的多智能体框架),复用模块化 Agent 系统、实时反馈机制及工具链。
- 核心由 “可插拔工具(Tools)+ 系统提示(System Prompt)” 构成,支持动态路由、MCP 协议(标准化模型与工具通信)。
- 开发时间仅 3 小时,初期为 Demo 级,暂未进行 GALA 基准测试,效果一般(团队自评)。
- 开发者可灵活替换或扩展工具(如添加新API、修改提示词)。
- 直接运行在用户本地,适合隐私敏感场景(如企业数据不上传云端)。
3. 功能与性能
- Manus:
-
- 演示效果更复杂(如 SEO 分析、PPT 生成),任务规划细致,支持多智能体协同(如主代理、规划代理、工具代理)。
- 存在服务器负载高、任务中断、幻觉(如数据错误)等问题,实际性能受限于资源和模型稳定性。
- 用户友好,只需输入需求即可一键交付结果(如生成Excel报告)
- 黑箱操作,无法自定义底层逻辑
- OpenManus:

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



