大模型评测方法(四)

测试方法

大模型基准评测体系(3/4)

方法是选择行为,并将一系列行为组合导向预期结果的路径。大模型评测中的测试方法达成预期结果的重要保证手段。大模型评测是一项系统工作,需要事先规划好各项工作并逐步完成,上下游工作项之间在规划时相互影响,需要保证各步骤之间衔接合理,才能保证最终结果可靠。按照一般的结果反推导向思路,评测过程规划大致如下图所示,包括测试需求分析测试环境准备测试数据构建基准测试执行测试结果评估测试结果展示。如果从事过工程技术尤其是软件工程工作,会知道这是软件系统测试中比较常见的方法。我们将大模型作为一个独立的系统去看待,这种方法比较好理解。

image.png
大模型评测方法

1、测试需求分析

大模型评测是为了最终目标服务,达成结果之前需要对要达成的目标做拆分并进行分析,即需求分析。通过对要达成目标进行全面和准确的分析,有助于确保测试活动的有效性和高效性。需求分析不仅有助于确定测试的目标和范围,还指导如何选择适当的评估方法和工具。通常大模型评测需求分析要明确如下内容:评测目的、评测范围、待测模型。

1. 明确评测目的

首先要清楚为什么要做这个评估,关心的问题是什么。在前面评测策略中提到过,大模型研发人员关心的是衡量模型的能力和性能,精选和优化模型,而大模型使用者则关心大模型在特定场景中表现,而评测机构则看中大模型之间的综合能力对比,总结各自的特点。

2. 划定评测范围

明确了评测的目的,那么就可以划定评测的范围。例如关注性能表现,就要评测模型的推理速度、响应时间等;关注知识理解和推理能力,就要评测模型的通用性和跨领域能力;关注稳定及一致性表现,就要评测模型的鲁棒性、一致性能力等。下面是一些评测范围示例。

  • 功能特性:如逻辑推理、数学计算、专业领域知识等。
  • 价值表现:评测模型准确性、鲁棒性、公平性等。
  • 技术性能:包括响应时间、推理速度、可扩展性等。
3. 待测模型选择

选择大语言模型:不论是大模型研发人员、用户还是评测机构在评测大模型时都需要在多个大模型之间做对比,这样最终的评分才能产生实际意义。如何去选择相关模型,在不清楚选择哪些模型做对比的情况下,使用与当前评测方向一致或者类似的大模型评测榜单是一个比较好的选择。同时榜单中使用的评测数据集也可以为之后的评测数据集选择做参考。

  1. 如何选择对比的大模型:明确了评测范围,按照寻找相关评测榜单的思路,那么就剩下挑选模型了,已经有了明确的方向,到这一步了就比较简单。
  2. 模型是否要做处理:大模型是否要做预训练,是否要做微调。这里取决于评测的策略。
  • 未预训练大模型:存在过拟合问题、泛化能力差,表现不稳定。
  • 基础大模型:预训练获得的模型,通过接触大量的文本数据,学到了丰富的词汇、语法、语义信息及常识性知识。这使得它们在处理各种自然语言任务时具有更好的泛化能力。
  • 微调大模型:针对特定的任务(如文本分类、机器翻译等),只需要在少量标注数据上进行微调,模型就能快速适应新任务。

2、测试环境准备

测试环境准备是大模型测试的基础,需要搭建配套的软硬件平台保证测试顺利执行。首先,根据被测模型的实际性能要求需要搭建测试软硬件环境。其次,对于单一模型的少样本测试,可利用脚本完成测试,而对于多个模型的大数据量测试,需要使用测试框架,可将其部署在单一服务器或集群中。再者,对私有化部署大模型,需要将其部署在环境中。最后,可使用少量测试数据对测试环境功能进行验证。下面列举了完整搭建测试环境的一般步骤

1. 硬件与计算资源准备
  • 硬件配置:确保所有测试都在相同的硬件配置下进行。包括使用相同类型的 CPU(中央处理器)、GPU(图形处理器)及其参数设置。例如,如果使用 GPU 加速计算,要保证 GPU 的型号(如 NVIDIA A100、V100 等)相同,显存容量、计算核心数量等硬件规格一致。因为不同的硬件性能会对模型的训练和推理速度产生显著影响,从而干扰测试结果
  • 网络带宽:保证足够的网络带宽,尤其是在涉及远程数据传输或云端服务调用时,避免因网络延迟影响评估结果。

  • 存储空间:考虑到评估过程中可能会产生大量的日志文件、中间结果等,需预留充足的磁盘空间用于保存这些数据。

2. 软件环境搭建
  • 操作系统与依赖库:安装所需的操作系统版本,并配置Python解释器及相关依赖库(如PyTorch、TensorFlow)。确保所有组件兼容且版本匹配,防止出现运行时错误。

  • 模型部署工具:利用Docker容器化技术或其他虚拟化手段,创建隔离的评估环境,简化模型部署流程并提高可移植性。

  • 评估框架与工具链:集成常用的评估框架(如PAI大模型评测平台、OpenCompass等),以及必要的辅助工具(如数据预处理脚本、可视化分析库)。确保这些工具能够无缝协作,支持自动化评估流程。

3、测试数据构建

构建用于大模型评测的数据集是一项复杂且细致的工作,它直接关系到评估结果的有效性和可靠性。根据需求分析阶段的评测范围,选定具体的评测任务类型,如文本分类、推理速度、鲁棒性等。根据任务类型来确定需要的评测数据集,同时也可以考虑前面提到的使用相关评测榜单所用的公开数据集。

1. 收集高质量的数据源
  • 多样化数据来源:为了确保数据集的代表性和泛化能力,应当从多个渠道获取数据,包括但不限于公开可用的数据集、行业内部积累的真实案例、人工撰写的测试用例等。

  • 保证数据质量:对收集到的数据进行严格筛选,去除低质量、重复或者不相关的内容。高质量的数据是构建有效评测基准的前提条件。

2. 数据预处理与标注
  • 格式统一:将不同来源的数据转换成一致的格式,便于后续处理和使用。例如,对于自然语言处理任务,通常会采用JSONL格式来组织问题-答案对。

  • 专业标注:如果评测任务涉及到专业知识领域(如医学、法律),则需要邀请该领域的专家参与数据标注工作,以保证标签的准确性和权威性。

  • 避免偏差:在标注过程中要注意防止引入任何可能导致模型偏向性的因素,比如过度集中于某一类样本。

3. 构建合理的数据结构
  • 划分训练/验证/测试集:按照一定比例将原始数据划分为训练集、验证集和测试集。特别是测试集应该尽可能地独立于训练集之外,确保其能够真实反映模型未曾见过的新情况下的表现。

  • 保持平衡分布:确保各个类别之间的样本数量尽量均衡,避免因类别不平衡而导致的评估失真。

4. 设计评测案例
  • 任务定义与指标选取:明确评估的具体任务类型(如文本分类、问答系统等),并选定适当的评价指标(如准确率、F1分数)。确保这些指标能够全面衡量模型的各项能力。

  • 覆盖广泛场景:设计足够多样的评测案例,涵盖尽可能多的实际应用场景,这样才能全面考察模型的能力边界。根据需要(如涉及到多步骤推理等)做复杂案例。

  • 指令形式多样化:考虑到LLM对提示词非常敏感,评测案例的设计也应当考虑多种指令形式,包括直接提问、逐步引导、提供示例等方式,以便更全面地测试模型的理解与响应能力。

  • 自动化脚本编写:开发或选用现成的自动化脚本,实现从数据加载到结果输出的一站式处理。这有助于减少人为干预带来的不确定性,同时提升工作效率。

  • 案例评审:设计测试案例对场景的覆盖程度及合理性需要做评测,进步提升评测结果质量。

5. 安全与隐私保护措施
  • 访问权限管理:设置严格的用户认证机制,限制对敏感数据及模型参数的访问权限,仅授权给必要的人员。

  • 数据加密传输:采用SSL/TLS协议加密数据在网络中的传输路径,防止中途截获或篡改。

  • 匿名化处理:对于包含个人身份信息的数据,在不影响评估效果的前提下,尽量采取去标识化或泛化处理方式,保障用户隐私。

4、基准测试执行

大模型评测的基准测试执行是一个系统化的过程,旨在通过一系列标准化的任务和数据集来量化评估大型语言模型(LLMs)的表现。这一过程不仅需要技术上的精确实施,还需要严格的管理和细致的规划。测试执行阶段需要将测试数据输入被测模型,并观察被测模型的输出结果。

1. 执行方式
  • 单点执行:单点执行在单台服务器上将测试数据依次输入大模型,并收集大模型的输出结果,测试成本相对较低。
  • 分布式执行:分布式执行通过中心节点对测试任务和数据集进行切分,再分发至单点服务器上分布式执行,最后通过中心节点对大模型输出结果进行汇总并统计,测试效率相对较高。
2. 参数设置
  • 参数一致:对于模型本身的参数,如神经网络的层数、神经元数量、学习率等,直接影响模型的性能和行为,测试过程中保持一致(除非是专门测试参数变化对性能的影响)。
  • 参数记录:记录所有测试过程中的超参数设置,包括批量大小(batch size)、训练轮数(epochs)等。这些超参数在不同的设置下会对模型的测试产生不同的影响,详细记录有助于后续对测试结果进行分析和复现。
3. 执行过程
  • 执行过程:按照预先设计好的测试流程进行操作,包括模型的加载、数据的输入、推理过程和结果的记录等环节。例如,在每次测试模型的推理性能时,要确保数据输入的顺序、格式相同,并且以相同的方式记录模型的输出结果(如记录生成文本的完整内容、预测概率等)。
  • 指标记录:记录模型在各项测试指标上的结果,包括但不限于准确率、召回率、F1 - score、运行时间等。对于生成式模型,还应记录生成内容的质量指标,如多样性、流畅性等相关数据。例如,可以通过计算生成文本中词汇的丰富程度来衡量多样性,通过语言模型对生成文本的概率评估来衡量流畅性。
  • 中间结果:记录测试过程中的中间结果,如模型在每个训练轮次后的性能变化情况。这些中间结果有助于分析模型的学习曲线和收敛情况,对于理解模型的行为和性能演变过程非常重要。
  • 异常处理:对于可能出现的异常情况(如模型崩溃、数据加载错误等),要有明确的处理流程和记录方式。这些异常情况可能会影响测试的完整性和准确性,通过详细记录可以在后续分析中排除这些因素对结果的干扰。

5、测试结果评估

对于大模型生成的结果需要使用合理的评估指标进行衡量,以确保生成内容的正确性和准确性。

1. 建立基准线(评测单一大模型)
  • 现有模型表现:收集已知模型在同一任务上的表现作为参考。
  • 随机基线:将评测结果与现有模型(如GPT、BERT等)进行对比用于判断模型是否有显著优势。
2. 实施自动评估与人工评估相结合的方法
  • 自动评估:利用算法计算各项指标得分,这种方法效率高、成本低,适合大规模数据处理。然而,自动评估往往难以捕捉到细微的质量差异,并且对于某些复杂的或非标准化的任务来说不够准确。

  • 人工评估:邀请领域专家或普通用户参与评分,能够提供更加细致和深入的反馈。尽管这种方法耗时较长且成本较高,但它可以在一定程度上弥补自动评估的不足,特别是在评估开放生成任务时更为可靠。

3. 执行详细的统计分析
  • 科学分析:使用科学合理的统计方法来分析测试结果。例如,在比较多个模型的性能时,要进行适当的统计检验(如 t - 检验、方差分析等),以确定性能差异是否具有统计学意义。避免仅仅根据表面的结果差异就得出结论,因为这种差异可能是由于测试误差或数据波动导致的。
  • 综合评估:结合实际应用场景对测试结果进行解读。例如,虽然一个模型在某个测试指标上表现稍差,但如果它在其他方面(如对特定领域知识的处理能力、对低资源环境的适应性等)具有优势,那么在实际应用中仍然可能是一个更合适的选择。
6、测试结果展示

大模型基准测试结果可以通过测试报告、模型榜单、雷达图、柱状图等多种形式进行展示。大模型测试报告中需要包含评测目标、数据集描述、测试任务描述、测试环境描述、评估指标、量化结果、可视化结果、对比分析、评测结论、建议提升方向、错误样例等内容。

实际参考示例

AGI-Eval大语言模型评测方案

-未完待续-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值