【Matlab】基于长短期记忆网络LSTM实现多分类预测(Excel可直接替换数据)

本文介绍了如何使用长短期记忆网络(LSTM)在Matlab环境中进行多分类预测,详细阐述了算法原理,并提供了鸢尾花数据集的测试案例。通过Excel数据替换,读者可以方便地进行实验。同时,展示了训练进度、混淆矩阵以及对比结果。
摘要由CSDN通过智能技术生成

【Matlab】基于长短期记忆网络LSTM实现多分类预测(Excel可直接替换数据)

1.算法简介

长短期记忆网络LSTM(Long Short-Term Memory)是一种时间循环神经网络,可以学习和记忆长期依赖关系,会随着时间的推移保留信息12。LSTM是一种特殊的RNN(Recurrent Neural Network,循环神经网络),它通过引入三个门结构(输入门、遗忘门和输出门)来控制信息的流动,从而解决了普通RNN存在的梯度消失或爆炸的问题34。LSTM可以用来进行自然语言处理、语音识别、图像识别等任务5

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敲代码两年半的练习生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值