文章目录
-
- 介绍
-
- 散点图
- 直方图
- 箱线图
- 面积图
- 热图
- 相关图
- 折线图
- 韦恩图
- 火山图
- 饼图
- 密度曲线图
- 边界散点图(Scatterplot With Encircling)
- 边缘箱图/直方图(Marginal Histogram / Boxplot)
- 拟合散点图
- 相关系数图(Correlogram)
- 水平发散型文本(Diverging Texts)
- 水平棒棒糖图(Diverging Lollipop Chart)
- 去棒棒糖图(Diverging Dot Plot)
- 面积图(Area Chart)
- 排序条形图(Ordered Bar Chart)
- 直方图(Histogram)
- 核密度图(Density plot)
- 点图结合箱图(Dot + Box Plot)
- 小提琴图(Violin Plot)
- 饼图
- 时间序列图(Time Series多图)
- 堆叠面积图(Stacked Area Chart)
- 分层树形图(Hierarchical Dendrogram)
- 聚类图(Clusters)
- 气泡图
- 小提琴图Violin
- 核密度图 density chart
- 柱状图 histogram
- 箱线图 boxplot
- 山脊图 ridgeline
- 散点图 Scatterplot
- 热图 heatmap
- 相关图 correlogram
- 气泡图 Bubble
- 连线点图 Connected Scatterplot
- 二维密度图 Density 2d
- 条形图 Barplot
- 雷达图 radar chart
- 词云 wordcloud
- 平行坐标系统 Parallel Coordinates chart
- 棒棒糖图 Lollipop plot
- 循环条形图 circular barplot
- 分组堆积图 grouped stacked barplot
- 矩形树图 Treemap
- 圆圈图 doughhut
- 饼图 pie
- 系统树图 dendrogram
- 圆形图 Circular packing
- 分组线条图 grouped line chart
- 面积图 Area
- 面积堆积图 Stacked area chart
- Streamgraph
- Time Series
介绍
数据分析的图形可视化是了解数据分布、波动和相关性等属性必不可少的手段。不同的图形类型对数据属性的表征各不相同,通常具体问题使用具体的可视化图形。R语言在可视化方面具有极大的优势,因其本身就是统计学家为了研究统计问题开发的编程语言,因此极力推荐使用R语言可视化数据。
散点图
散点图是由x值和y值确定的点散乱分布在坐标轴上,一是可以用来展示数据的分布和聚合情况,二是可通过分布情况得到x和y之间的趋势结论。多用于回归分析,发现自变量和因变量的变化趋势,进而选择合适的函数对数据点进行拟合。
library(ggplot2)
library(dplyr)
dat <- %>% mutate(cyl = factor(cyl))
ggplot(dat, aes(x = wt, y = mpg, shape = cyl, color = cyl)) +
geom_point(size = 3, alpha = 0.4) +
geom_smooth(method = lm, linetype =