禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
文章目录
介绍
随机森林算法回归模型是一种集成学习方法,用于解决回归问题,即预测连续的数值型响应变量。它通过构建多个决策树并结合它们的预测结果来提高模型的准确性和鲁棒性。
原理
- 集成学习:随机森林是一种集成学习方法,它通过构建多个决策树并将它们的预测结果结合起来,以减少单一决策树的方差,提高模型的泛化能力。
- 自助采样(Bootstrap Aggregating):随机森林中的每棵树都是在原始数据集的一个随机子样本上训练得到的,这个子样本是通过有放回的抽样(即自助采样)得到的。
- 随机特征选择:在每棵树的每个分裂节点,随机森林不是考虑所有的特征,而是随机选择一部分特征,然后从中选择最佳分裂特征。这增加了树之间的多样性,减少了它们之间的相关性。