Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation | MM '22 | 2022 |
🌟 背景
跨域顺序推荐(Cross-Domain Sequential Recommendation, CDSR)旨在通过挖掘和转移用户在不同领域的顺序偏好来缓解冷启动问题。传统的CDSR模型主要通过用户和物品建模来捕捉协同信息,却忽略了物品特征中蕴含的丰富语义信息。近年来,大语言模型(Large Language Model, LLM)在语义推理方面展现出强大能力,这促使我们将其引入CDSR中以更好地捕捉语义信息.
🛠️ 相关工作
- 顺序推荐:从最初的马尔可夫链和矩阵分解,到基于神经网络的方法如GRU4Rec、Caser,再到注意力机制和图神经网络(GNNs)的应用,顺序推荐技术不断发展.
- 跨域顺序推荐:早期工作