文献阅读分享:跨域顺序推荐中的用户检索与大语言模型集成

Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation MM '22 2022

🌟 背景

跨域顺序推荐(Cross-Domain Sequential Recommendation, CDSR)旨在通过挖掘和转移用户在不同领域的顺序偏好来缓解冷启动问题。传统的CDSR模型主要通过用户和物品建模来捕捉协同信息,却忽略了物品特征中蕴含的丰富语义信息。近年来,大语言模型(Large Language Model, LLM)在语义推理方面展现出强大能力,这促使我们将其引入CDSR中以更好地捕捉语义信息.

🛠️ 相关工作
  • 顺序推荐:从最初的马尔可夫链和矩阵分解,到基于神经网络的方法如GRU4Rec、Caser,再到注意力机制和图神经网络(GNNs)的应用,顺序推荐技术不断发展.
  • 跨域顺序推荐:早期工作
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值