1.2贝叶斯决策

贝叶斯决策

分类器

贝叶斯决策是属于基于统计决策的分类器
在这里插入图片描述
无论分类器原理如何复杂,都可以表示为一个多元单值函数
F ( x ) : X d → Y   [ − 1 , 1 ] F(x): X^d→Y\ [-1,1] F(x):XdY [1,1]

贝叶斯决策在什么场景下使用?

前提:目标(事物)的观察值是随机的,服从一定的概率分布。

贝叶斯决策能够用于分类的出发点是什么?
贝叶斯决策思想及计算公式

由事件(样本)→现象(特征)→推断事件及其概率,例子:男性女性样本→身高、体重→生成分类器分类(给新的样本比如身高177cm体重75kg判定属于男性)
在这里插入图片描述
后验概率的计算(Bayes公式):   P ( ω i   ∣ X ) = P ( ω i ) p ( X ∣   ω i ) P ( X ) = P ( ω i ) p ( X ∣   ω i ) ∑ i = 1 M P ( ω i ) p ( X ∣   ω i ) ​ \ P(ω_i\ |X)=\frac{P(ω_i)p(X|\ ω_i)}{P(X)}=\frac{P(ω_i)p(X|\ ω_i)}{\displaystyle\sum_{i=1}^{M} P(ω_i)p(X|\ ω_i)}​  P(ωi X)=P(X)P(ωi)p(X ωi)=i=1MP(ωi)p(X ωi)P(ωi)p(X ωi)

一些基本概念

在这里插入图片描述
在这里插入图片描述

几种常用的决策规则

1.基于最大后验概率的贝叶斯决策(MAP)

决策规则(属于那类的后验概率最大,即判断为哪一类)
a r g   m a x   P ( ω i   ∣ X ) ​ arg\ max\ P(ω_i\ |X)​ arg max P(ωi X)
判别函数 : g i ( x ) = P ( ω i ) p ( X ∣   ω i ) ​ g_i(x)=P(ω_i)p(X|\ ω_i)​ gi(x)=P(ωi)p(X ωi)

2.基于最小错误率的贝叶斯决策

m i n         P ( e ) = ∫ P ( e ∣   x )   p ( e ) ​ d x min\ \ \ \ \ \ \ P(e) = \int P(e|\ x)\ p(e)​dx min       P(e)=P(e x) p(e)dx 在这里插入图片描述
二分类时等价于最大后验贝叶斯决策

3.基于最小风险的贝叶斯决策

考虑不同错误所带来的损失(相当于对每一项决策赋予权重)--------决策使风险最小

1.把样本 x x x看作 d d d维随机变量 x = [ x 1 , x 2 , . . . x d ] T x=\begin{bmatrix} x_1,&x_2,&...&x_d\end{bmatrix}^T x=[x1,x2,...xd]T
2.状态空间 Ω Ω Ω c c c个可能的状态组成: Ω = { ω 1 , ω 2 , . . . ω c } Ω=\{ ω_1,ω_2,...ω_c \} Ω={ω1,ω2,...ωc}
3.对随机向量 x x x可能采取的决策组成了决策空间,由 k k k个决策组成: A = { a 1 , a 2 , . . . a k } A=\{a_1,a_2,...a_k\} A={a1,a2,...ak}
4.对于实际状态 ω j ω_j ωj的向量 x x x,采取决策 a i a_i ai所带来的损失为 λ ( a i , w j ) λ(a_i,w_j) λ(ai,wj),形成损失函数(权重)(人为确定

判别?
在这里插入图片描述

两类错误率

在这里插入图片描述

在这里插入图片描述真阳性率(True Positive Rate, TPR): T P T P + F N \frac{TP}{TP+FN} TP+FNTP
假阳性率(False Positive Rate, FPR) : F P F P + T N \frac{FP}{FP+TN} FP+TNFP
查准率P: T P T P + F P \frac{TP}{TP+FP} TP+FPTP
查全率R: T P T P + F N \frac{TP}{TP+FN} TP+FNTP

针对同一个分类器,根据真阳性率和假阳性率画ROC曲线,用曲线下的(相对)面积即AUC(area underROC curve)来定量地衡量方法的性能
在这里插入图片描述
根据查准率和查全率画PR曲线,找到针对自己需求(如更需查全且查准率大于80%)下对应参数为分类器参数,或选择最优分类器
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值