[数理知识]统计决策理论——贝叶斯决策与两类错误率

本文介绍了统计决策理论中的贝叶斯决策过程,阐述了如何利用贝叶斯公式降低分类错误率。通过讨论最小错误率和最小风险贝叶斯决策,探讨了二分类问题中的决策错误率和决策面。此外,还讲解了两类错误率的概念,包括灵敏度、特异度、假阳性和假阴性,并引入ROC曲线作为衡量分类性能的指标。
摘要由CSDN通过智能技术生成


前序

[数理知识]贝叶斯公式和最大似然估计笔记


1 决策理论与方法

1.1 基于先验概率的决策过程

x x x 为观察到的样本特征,分类空间为 A = { a 1 , a 2 . . . , a n } A=\{a_1, a_2...,a_n\} A={ a1,a2...,an},其中 a i a_i ai为第 i i i个类, P ( a i ) P(a_i) P(ai)为类 a i a_i ai的发生概率。

  • x = [ x 1 , x 2 , . . . , x d ] T x=[x_1,x_2,...,x_d]^T x=[x1,x2,...,xd]T为由 d d d维空间组成的特征向量。
  • P ( a j ) > P ( a o t h e r s ) P(a_j)>P(a_{others}) P(aj)>P(aothers)时,记决策规则 x ∈ a j x \in a_j xaj
  • 当做出决策 x ∈ a j x \in a_j xaj之后,单类分类错误率 P ( e r r o r j ) = 1 − P ( a j ) P({error}_j)=1-P(a_j) P(errorj)=1P(aj),即 x ∉ a j x \notin a_j x/aj的概率。

可以看到,一般决策过程仅依靠先验概率 P ( a j ) P(a_j) P(aj),使得对 x x x 的观察(特征参考)并没有对决策过程产生影响,总体错误率仍有降低的空间。

1.2 基于贝叶斯公式的决策过程

贝叶斯决策:在观察到 x x x 的样本特征后,基于贝叶斯公式,可以有效降低分类错误率:
P ( a i ∣ x ) = p ( x ∣ a i ) P ( a i ) p ( x ) = p ( x ∣ a i ) P ( a i ) ∑ j = 1 n p ( x ∣ a j ) P ( a j ) \begin{aligned} P(a_i|x)&=\frac{p(x|a_i)P(a_i)}{p(x)} \\ &=\frac{p(x|a_i)P(a_i)}{ \sum_{j=1}^n{ p(x|a_j)P(a_j) } }\\ \end{aligned} P(aix)=p(x)p(xai)P(ai)=j=1np(xaj)P(aj)p(xai)P(ai)其中, p ( x ∣ a i ) p(x|a_i) p(xai)类条件密度 P ( a i ) P(a_i) P(ai)先验概率 p ( x ) p(x) p(x)总体密度 P ( a i ∣ x ) P(a_i|x) P(aix)后验概率

  • 因此在本质上,贝叶斯决策是指:[后验概率]等于[先验概率]与[类条件密度]的乘积,最后采用[总体密度]做归一化。同时,[总体密度]由全概率公式又可以转化为所有类的[先验概率]与其[类概率密度]乘积之和。

贝叶斯决策也被称作统计决策理论

  • λ = p ( x ∣ a i ) p ( x ) \lambda = \frac{p(x|a_i)}{p(x)} λ=p(x)p(xai) ,所以基于贝叶斯决策的决策的错误率:
    P ( e r r o r i ) = 1 − P ( a i ∣ x ) = 1 − λ × P ( a i ) \begin{aligned} P({error}_i)&=1-P(a_i|x) \\ &=1-\lambda \times P(a_i) \end{aligned} P(errori)=1P(aix)=1λ×P(ai)

贝叶斯分类决策增益 λ \lambda λ 是对先验概率 P ( a i ) P(a_i) P(ai)的增益,是基于对 x x x的观测而得到的,其值等于类条件概率在总体密度上的归一值,增益程度取决于类条件概率 p ( x ∣ a i ) p(x|a_i) p(xai)——当 a i a_i ai越容易导致 x x x的发生时(类条件概率越大),则增益程度越高( λ \lambda λ越大),第 i i i类的分类错误率越低。

1.3 决策错误率

(总体)决策错误率定义为所有服从同样分布的独立样本上的单类错误率的期望,即:
P ( e ) = ∫ P ( e ∣ x ) × p ( x ) d x P(e)=\int P(e|x) \times p(x) dx P(e)=P(ex)×p(x)dx

  • 其中, P ( e ∣ x ) P(e|x) P(ex)即为单类分类错误率 P ( e r r o r i ) P({error}_i) P(errori)在连续函数上的表示法。
  • 显然,贝叶斯决策由于增益 λ \lambda λ的存在,能有效降低决策错误率。

2 贝叶斯决策的优化

2.1 最小错误率贝叶斯决策

对于每次决策,取后验概率最大的决策,即可使得决策错误率最小。
P ( a i ∣ x ) = max ⁡ j = 1.. n P ( a j ∣ x ) P(a_i|x)=\max_{j=1..n} {P(a_j|x)}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值