数值分析(10):数值积分之Gauss型求积公式

13 篇文章 ¥119.90 ¥299.90

1. 引言

在前一章《数值分析(9):数值积分之Newton-Cotes求积公式和复合求积公式》中,提出使用等分区间的方式来给出插值节点,从而得到lagrange插值多项式,最后得到Newton-Cotes求积公式。

从Newton-Cotes求积公式的余项中可以知道,它的代数精度有以下规律:

在这里插入图片描述

可以看到: Newton-Cotes求积公式是等距节点,n+1个节点,代数精度至少是n次。

那么同样的节点数,不采用等距分布,代数精度能否提高?
答案是肯定的,我们来看下面这个例子:

在这里插入图片描述
根据《数值分析(8):数值积分之Lag

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值