概率论第三章复习

概念

1.数学期望

离散型: E ϵ = ∑ k = 1 ∞ k p k E\epsilon=\sum\limits_{k=1}^\infty kp_k Eϵ=k=1kpk

连续型: E ϵ = ∫ − ∞ ∞ x p ( x ) d x E\epsilon=\int\limits_{-\infty}^\infty xp(x)dx Eϵ=xp(x)dx

或者为: E ϵ = ∫ − ∞ ∞ x d F ( x ) E\epsilon=\int\limits_{-\infty}^\infty xdF(x) Eϵ=xdF(x)

也有: E ϵ = ∫ 0 ∞ P ( ϵ > t ) d t − ∫ − ∞ 0 P ( ϵ < t ) d t E\epsilon=\int\limits_{0}^\infty P(\epsilon>t)dt-\int\limits_{-\infty}^0 P(\epsilon<t)dt Eϵ=0P(ϵ>t)dt0P(ϵ<t)dt

换元型: E η = E f ( ϵ ) E\eta=Ef(\epsilon) Eη=Ef(ϵ),当 η = f ( ϵ ) \eta=f(\epsilon) η=f(ϵ)

需要记住的:

正态分布: E ϵ = a E\epsilon=a Eϵ=a,( p ( x ) = 1 2 π σ e − ( x − a ) 2 2 σ 2 p(x)=\frac1{\sqrt{2\pi\sigma}}e^{-\frac{(x-a)^2}{2\sigma^2}} p(x)=2πσ 1e2σ2(xa)2)

指数分布: E ϵ = 1 λ E\epsilon=\frac{1}{\lambda} Eϵ=λ1

性质;

1.常数的期望等于本身, E c = c Ec=c Ec=c

2. E ( a ϵ + b ) = a E ϵ + b E(a\epsilon+b)=aE\epsilon+b E(aϵ+b)=aEϵ+b

3. E ( ϵ + η ) = E ϵ + E η E(\epsilon+\eta)=E\epsilon+E\eta E(ϵ+η)=Eϵ+Eη

3.若 η , ϵ \eta,\epsilon η,ϵ独立,则 E ϵ η = E ϵ E η E\epsilon\eta=E\epsilon E\eta Eϵη=EϵEη

方差

定义: V a r ϵ = E ( ϵ − E ϵ ) 2 Var\epsilon=E(\epsilon-E\epsilon)^2 Varϵ=E(ϵEϵ)2

计算公式:

V a r ϵ = E ϵ 2 − ( E ϵ ) 2 Var\epsilon=E\epsilon^2-(E\epsilon)^2 Varϵ=Eϵ2(Eϵ)2

性质:

1. V a r ( a ϵ + c ) = a 2 V a r ϵ Var(a\epsilon+c)=a^2Var\epsilon Var(aϵ+c)=a2Varϵ

2. V a r ∑ ϵ i = ∑ V a r ϵ i + 2 ∑ i < j ( ϵ i − E ϵ i ) ( ϵ j − E ϵ j ) Var\sum\epsilon_i=\sum Var\epsilon_i+2\sum\limits_{i< j}(\epsilon_i-E\epsilon_i)(\epsilon_j-E\epsilon_j) Varϵi=Varϵi+2i<j(ϵiEϵi)(ϵjEϵj)

ϵ i \epsilon_i ϵi相互独立时,只有第一项

协方差

定义: C o v ( ϵ i , ϵ j ) = E ( ϵ i − E ϵ i ) ( ϵ j − E ϵ j ) Cov(\epsilon_i,\epsilon_j)=E(\epsilon_i-E\epsilon_i)(\epsilon_j-E\epsilon_j) Cov(ϵi,ϵj)=E(ϵiEϵi)(ϵjEϵj)

性质:

1. C o v ( ϵ , η ) = E ϵ η − E ϵ E η Cov(\epsilon,\eta)=E\epsilon\eta-E\epsilon E\eta Cov(ϵ,η)=EϵηEϵEη

2.协方差矩阵:对于n维随机变量, [ b i , j ] = C o v ( ϵ i , ϵ j ) [b_{i,j}]=Cov(\epsilon_i,\epsilon_j) [bi,j]=Cov(ϵi,ϵj)

其他的根据1式自己推

相关系数

r ϵ , η = C o v ( ϵ , η ) V a r ϵ V a r η = E ( ϵ − E ϵ ) ( η − E η ) V a r ϵ V a r η r_{\epsilon,\eta}=\frac{Cov(\epsilon,\eta)}{\sqrt{Var\epsilon Var\eta}}=\frac{E(\epsilon-E\epsilon)(\eta-E\eta)}{\sqrt{Var\epsilon Var\eta}} rϵ,η=VarϵVarη Cov(ϵ,η)=VarϵVarη E(ϵEϵ)(ηEη)

不相关:

1. r ϵ η = 0 r_{\epsilon\eta}=0 rϵη=0

2. C o v ( ϵ , η ) = 0 Cov(\epsilon,\eta)=0 Cov(ϵ,η)=0(因为这个与1只是差了一个系数)

3. E ϵ η = E ϵ E η E\epsilon\eta=E\epsilon E\eta Eϵη=EϵEη(利用Cov的性质1)

4. V a r ϵ + V a r η = V a r ( ϵ + η ) Var\epsilon+Var\eta=Var(\epsilon+\eta) Varϵ+Varη=Var(ϵ+η)(利用Cov=0和Var的加法)

特征函数

定义: f ( t ) = E e i t ϵ f(t)=Ee^{it\epsilon} f(t)=Eeitϵ

计算: f ( t ) = ∫ − ∞ ∞ e i t x d F ( x ) = ∫ − ∞ ∞ e i t x p ( x ) d x f(t)=\int\limits_{-\infty}^{\infty}e^{itx}dF(x)=\int\limits_{-\infty}^{\infty}e^{itx}p(x)dx f(t)=eitxdF(x)=eitxp(x)dx

题目

1.给密度函数求期望

直接套公式积出来,一般需要对称性计算。

如果是三角函数,有没有对称性,因为奇函数在偶区间上是0

如果有绝对值,把绝对值里的设为t,因为t乘偶函数在偶区间上是0。

另外注意:求x^2的期望不是求(Ex) ^ 2,而是Ex ^ 2

2.期望换元

使用公式 E f ( x ) = ∫ f ( a ) f ( b ) f ( x ) p ( x ) d x Ef(x)=\int\limits_{f(a)}^{f(b)}f(x)p(x)dx Ef(x)=f(a)f(b)f(x)p(x)dx

即上下限换掉,x换掉,分布还是没变。

3.出现max的证明题:

max ⁡ ( a , b ) = a + b − ∣ a − b ∣ 2 \max(a,b)=\frac{a+b-|a-b|}{2} max(a,b)=2a+bab

再按照两个分别计算。算a-b的分布比较复杂,暂时没想到好方法。

4.给定实际情况算期望

一般是运用期望的加法线性性质。

对于其中一次计算期望。即这次实验得到的值乘以概率之和。如果是发生类型的,发生为1,不发生为0

5.给定密度计算方差

一般是计算 E ϵ E\epsilon Eϵ E ϵ 2 E\epsilon^2 Eϵ2,再套用公式。

注意级数求和的时候,

1.注意先计算 ∑ k 2 x \sum k^2x k2x,再代入具体的值。

2.什么时候提出x,什么时候求导的顺序要写清楚

6.关于Var的证明

利用Var的性质。

例:随机变量 ϵ \epsilon ϵ取值在 [ a , b ] [a,b] [a,b]之间,证明: V a r ϵ ≤ ( b − a ) 2 4 Var\epsilon\le\frac{(b-a)^2}{4} Varϵ4(ba)2

可以考虑极端情况。

Var反应的是离散程度,因此要 ϵ − E ϵ \epsilon-E\epsilon ϵEϵ最大。可以想象一下,Var最大的情况是变量分别分布在两个端点,并且 E ϵ = b + a 2 E\epsilon=\frac{b+a}{2} Eϵ=2b+a

V a r ϵ = E ϵ 2 − ( E ϵ ) 2 ≤ ( b − a ) 2 4 Var\epsilon=E\epsilon^2-(E\epsilon)^2\le\frac{(b-a)^2}4 Varϵ=Eϵ2(Eϵ)24(ba)2

例: ϵ 1 , . . ϵ i \epsilon_1,..\epsilon_i ϵ1,..ϵi相互独立, V a r ϵ i = δ i 2 Var\epsilon_i=\delta_i^2 Varϵi=δi2,求 a 1 , . . . a n a_1,...a_n a1,...an,使得 V a r ( a 1 ϵ 1 + . . . a n ϵ n ) Var(a_1\epsilon_1+...a_n\epsilon_n) Var(a1ϵ1+...anϵn)最小,且 ∑ a i = 1 \sum a_i=1 ai=1

可以看出求的是Var的和,

利用Var加法性质: V a r ( a + b ) = V a r a + V a r b + 2 C o v ( a , b ) Var(a+b)=Vara+Varb+2Cov(a,b) Var(a+b)=Vara+Varb+2Cov(a,b),由于是独立的,因此Cov(a,b)项为0,只有Var相加的项。

V a r ( a 1 ϵ 1 + . . . a n ϵ n ) = V a r a 1 ϵ 1 + . . . + V a r a n ϵ n = a 1 2 δ 1 2 + . . . + a n 2 δ n 2 Var(a_1\epsilon_1+...a_n\epsilon_n)=Vara_1\epsilon_1+...+Vara_n\epsilon_n=a_1^2\delta_1^2+...+a_n^2\delta_n^2 Var(a1ϵ1+...anϵn)=Vara1ϵ1+...+Varanϵn=a12δ12+...+an2δn2

根据柯西不等式或者基本不等式,最小的取等条件是每一项都相同。

因此 a i = k δ i a_i=\frac{k}{\delta_i} ai=δik,选取k满足ai之和为1, k = 1 1 δ 1 + . . . . + 1 δ n k=\frac{1}{\frac{1}{\delta_1}+....+\frac{1}{\delta_n}} k=δ11+....+δn11

感觉答案有问题,以上做法更加准确。

7.给定分布求协方差矩阵

需要求出

E ϵ η = ∬ x y p ( x , y ) d x d y E\epsilon\eta=\iint xyp(x,y)dxdy Eϵη=xyp(x,y)dxdy

E ϵ = ∫ ∫ − ∞ ∞ x p ( x , y ) d y d x E\epsilon=\int\int\limits_{-\infty}^{\infty} xp(x,y)dydx Eϵ=xp(x,y)dydx

E η = ∫ ∫ − ∞ ∞ y p ( x , y ) d x d y E\eta=\int\int\limits_{-\infty}^{\infty} yp(x,y)dxdy Eη=yp(x,y)dxdy

E ϵ 2 = ∫ ∫ − ∞ ∞ x 2 p ( x , y ) d y d x E\epsilon^2=\int\int\limits_{-\infty}^{\infty} x^2p(x,y)dydx Eϵ2=x2p(x,y)dydx

E η 2 = ∫ ∫ − ∞ ∞ y 2 p ( x , y ) d x d y E\eta^2=\int\int\limits_{-\infty}^{\infty} y^2p(x,y)dxdy Eη2=y2p(x,y)dxdy

最后得到协方差矩阵:

D ϵ = E ϵ 2 − ( E ϵ ) 2 D\epsilon=E\epsilon^2-(E\epsilon)^2 Dϵ=Eϵ2(Eϵ)2

D η = E η 2 − ( E η ) 2 D\eta=E\eta^2-(E\eta)^2 Dη=Eη2(Eη)2

C o v ( ϵ , η ) = E ϵ η − E ϵ E η Cov(\epsilon,\eta)=E\epsilon\eta-E\epsilon E\eta Cov(ϵ,η)=EϵηEϵEη

[ D ϵ C o v ( ϵ , η ) C o v ( ϵ , η ) D η ] \begin{bmatrix}D\epsilon&Cov(\epsilon,\eta)\\Cov(\epsilon,\eta)&D\eta\end{bmatrix} [DϵCov(ϵ,η)Cov(ϵ,η)Dη]

8.给定分布,求线性组合的相关系数

利用协方差和期望的性质。

例: ϵ \epsilon ϵ η \eta η独立同分布,为 N ( a , δ 2 ) N(a,\delta^2) N(a,δ2),求 p ϵ + q η , u ϵ + v η p\epsilon+q\eta,u\epsilon+v\eta pϵ+qη,uϵ+vη的相关系数。

V a r ( p ϵ + q η ) = V a r p ϵ + V a r q η = p 2 V a r ϵ + q 2 V a r η Var(p\epsilon+q\eta)=Varp\epsilon+Varq\eta=p^2Var\epsilon+q^2Var\eta Var(pϵ+qη)=Varpϵ+Varqη=p2Varϵ+q2Varη

V a r ( u ϵ + v η ) = u 2 V a r ϵ + v 2 V a r η Var(u\epsilon+v\eta)=u^2Var\epsilon+v^2Var\eta Var(uϵ+vη)=u2Varϵ+v2Varη

C o v ( p ϵ + q η , u ϵ + v η ) = E ( p ϵ + q η ) ( u ϵ + v η ) − E ( p ϵ + q η ) E ( u ϵ + v η ) = p u V a r ϵ + q v V a r η Cov(p\epsilon+q\eta,u\epsilon+v\eta)=E(p\epsilon+q\eta)(u\epsilon+v\eta)-E(p\epsilon+q\eta)E(u\epsilon+v\eta)=puVar\epsilon+qvVar\eta Cov(pϵ+qη,uϵ+vη)=E(pϵ+qη)(uϵ+vη)E(pϵ+qη)E(uϵ+vη)=puVarϵ+qvVarη

根据 V a r ϵ = δ 2 Var\epsilon=\delta^2 Varϵ=δ2代入, r = p u + q v ( p 2 + q 2 ) ( u 2 + v 2 ) r=\frac{pu+qv}{\sqrt{(p^2+q^2)(u^2+v^2)}} r=(p2+q2)(u2+v2) pu+qv

例:已知随机变量 ϵ 1 , . . . ϵ n \epsilon_1,...\epsilon_n ϵ1,...ϵn中任意两个相关系数都为 ρ \rho ρ,求证: ρ ≥ − 1 ( n − 1 ) \rho\ge-\frac1{(n-1)} ρ(n1)1

r = C o v ( ϵ i , ϵ j ) V a r ϵ i V a r ϵ j = ρ r=\frac{Cov(\epsilon_i,\epsilon_j)}{\sqrt{Var\epsilon_iVar\epsilon_j}}=\rho r=VarϵiVarϵj Cov(ϵi,ϵj)=ρ

利用方差的加法: V a r ( ϵ 1 + . . . ϵ n ) = ∑ i = 1 n V a r ϵ i + ∑ i , j ≤ n C o v ( ϵ i , ϵ j ) ≥ ∑ i = 1 n 2 ⋅ 2 V a r ϵ i V a r ϵ j + ρ ∑ i , j ≤ n V a r ϵ i V a r ϵ j ≥ n + ( n 2 − n ) ρ ≥ 0 Var(\epsilon_1+...\epsilon_n)=\sum\limits_{i=1}^nVar\epsilon_i+\sum\limits_{i,j\le n}Cov(\epsilon_i,\epsilon_j)\ge\sum\limits_{i=1}^{\frac{n}{2}}\cdot2\sqrt{Var\epsilon_iVar\epsilon_j}+\rho\sum\limits_{i,j\le n}\sqrt{Var\epsilon_iVar\epsilon_j}\ge n+(n^2-n)\rho\ge0 Var(ϵ1+...ϵn)=i=1nVarϵi+i,jnCov(ϵi,ϵj)i=12n2VarϵiVarϵj +ρi,jnVarϵiVarϵj n+(n2n)ρ0

说明:

1.第一步是任意凑成基本不等式

2.倒数第二步将凑成的基本不等式放成积最小的那一组,然后除掉。

3.运用基本不等式不改变符号。

9.求特征函数

用欧拉公式: e i t x = cos ⁡ ( t x ) + i sin ⁡ ( t x ) e^{itx}=\cos(tx)+i\sin(tx) eitx=cos(tx)+isin(tx)

然后实部和虚部分开来积分。

10.求二元正态分布

ϵ \epsilon ϵ服从正态分布 N ( a , B ) N(a,B) N(a,B),则 η = C ϵ \eta=C\epsilon η=Cϵ服从正态分布 N ( C a , C B C ′ ) N(Ca,CBC') N(Ca,CBC)

C’是C的转置

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值