CNN结构组成

1、卷积层

由滤波器filters和激活函数构成。 一般要设置的超参数包括filters的数量、大小、步长,以及padding是“valid”还是“same”。当然,还包括选择什么激活函数。

2、池化层

这里里面没有参数需要我们学习,因为这里里面的参数都是我们设置好了,要么是Maxpooling,要么是Averagepooling。 需要指定的超参数,包括是Max还是average,窗口大小以及步长。 通常,我们使用的比较多的是Maxpooling,而且一般取大小为(2,2)步长为2的filter,这样,经过pooling之后,输入的长宽都会缩小2倍,channels不变。

3、全连接层

之前学的神经网络中的那种最普通的层,就是一排神经元。因为这一层是每一个单元都和前一层的每一个单元相连接,所以称之为“全连接”。 这里要指定的超参数,无非就是神经元的数量,以及激活函数。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Cascade R-CNN是一种用于目标检测的深度学习结构,通过级联多个R-CNN模块来提高检测的准确性和鲁棒性。 Cascade R-CNN结构图由三个主要部分组成:基础网络、R-CNN模块和级联结构。 基础网络通常采用卷积神经网络CNN),用于提取图像的特征。常见的基础网络有ResNet、VGG等。基础网络负责将原始图像输入,并逐层提取出高层次的特征图,以供后续处理使用。 R-CNN模块是Cascade R-CNN的核心部分。它由若干个R-CNN模块级联而成,每个R-CNN模块通过一个CNN来进行特征提取,然后通过一个ROI Pooling层提取出感兴趣区域(Region of Interest)的特征。接着,这些特征经过全连接层,进行目标分类和边界框回归。 级联结构是Cascade R-CNN的独特之处。它通过级联多个R-CNN模块来逐步提高目标检测的准确性。级联结构的每个阶段都会选择性地引入难例样本,以便让模型更好地学习难以区分的目标。级联结构通常包括三个阶段,每个阶段从不同的阈值划分正负样本,通过进一步训练来提高检测的精度和召回率。 总结起来,Cascade R-CNN结构图展示了一个多阶段的目标检测系统。它通过级联多个R-CNN模块,逐步提高检测的准确性和鲁棒性。基础网络用于特征提取,R-CNN模块用于目标分类和边界框回归,级联结构用于引入难例样本并提高检测性能。这种结构在目标检测领域取得了显著的性能提升。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值