本文主要介绍生物信息学软件 Mothur评估错误率。
Mothur评估错误率
测量自己序列的错误率,是在有了一个模拟群落的共同序列后才能做的事情。提供的序列的每95个样本,都做了同样的工作(This is something we include for every 95 samples we sequence)。我们也应该如此,因为它可以帮助衡量错误率,了解项目进展情况(allow you to see how well your curation is going)以及测序设置是否有问题。首先使用get.groups命令从“Mock”样本中提取序列:
注意:如果在Windows机器上运行此分析,由于make.file命令创建组名的方式,Mock组名可能会大写,需要设置groups=MOCK。
mothur>get.groups(count=stability.trim.contigs.good.unique.good.filter.unique.precluster.denovo.vsearch.pick.pick.count_table,fasta=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.fasta, groups=Mock)
从以上结果看出,Mock样本中有64个唯一序列,总共4048个序列。现在可以使用seq.error命令来测量错误率:
mothur>seq.error(fasta=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.fasta,count=stability.trim.contigs.good.unique.good.filter.unique.precluster.denovo.vsearch.pick.pick.pick.count_table, reference=HMP_MOCK.v35.fasta, aligned=F)
结果显示错误率是0.0065%。现在可以将序列聚类到OTU中,以查看有多少个伪OTU:
mothur>dist.seqs(fasta=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.fasta, cutoff=0.03)
mothur>cluster(column=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.dist,count=stability.trim.contigs.good.unique.good.filter.unique.precluster.denovo.vsearch.pick.pick.pick.count_table)
mothur>make.shared(list=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.opti_mcc.list,count=stability.trim.contigs.good.unique.good.filter.unique.precluster.denovo.vsearch.pick.pick.pick.count_table, label=0.03)
mothur>rarefaction.single(shared=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.opti_mcc.shared)
此命令字符串将生成一个名为stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.opti_mcc.groups.rarefaction的文件。打开它会看到,对于4048个序列,有35个来自Mock群落的OTU。这个数字当然包括一些没有被检测到的隐形嵌合体。如果使用3000个序列,则大约有31个OTU。在没有嵌合体且无测序错误的完美世界中,将拥有20个OTU。
这篇推文对你有帮助吗?喜欢这篇文章吗?喜欢就不要错过呀,关注本知乎号查看更多的环境微生物生信分析相关文章。亦可以用微信扫描下方二维码关注“环微分析”微信公众号,小编在里面载入了更加完善的学习资料供广大生信分析研究者爱好者参考学习,也希望读者们发现错误后予以指出,小编愿与诸君共同进步!!!
学习环境微生物分析,关注“环微分析”公众号,持续更新,开源免费,敬请关注!
转载自原创文章:
Mothur4_评估错误率mp.weixin.qq.com/s/yu8YSxxYt757SUC73jRyhA
最后,再次感谢你阅读本篇文章,真心希望对你有所帮助。感谢!