前言:
在深度学习领域,模型的训练和优化通常在高性能服务器上进行,但随着边缘计算和物联网设备的普及,将这些模型部署到嵌入式设备上以进行实时推理变得越来越重要。对于想要将深度学习模型部署到嵌入式设备上的工程师来说,如何在有限的计算资源下实现高效推理是一个关键挑战。
这时,NVIDIA 的 TensorRT 工具链提供了一套强大的解决方案。通过将 ONNX 模型转换为 TensorRT 引擎,我们可以大幅提升模型的推理性能,并减少对内存和计算资源的需求。TensorRT 支持多种精度(如 FP16 和 INT8),使得在保证准确度的同时能够极大地加速推理速度。
对于使用 NVIDIA 硬件的嵌入式设备,如 Jetson 系列,TensorRT 提供了与硬件紧密集成的优势。它能充分利用 NVIDIA GPU 的并行计算能力以及 CUDA 和 cuDNN 加速库,从而显著提升模型推理速度。相比于其他常规推理框架,TensorRT 可以在不牺牲精度的情况下通过优化模型结构,使得推理速度更快、占用内存更少。
本篇博客将详细介绍如何使用 trtexec
工具将 ONNX 模型转换为 TensorRT 模型,并在嵌入式设备上进行部署,为深度学习工程师提供一条高效部署的路径。
1. 准备 ONNX 模型
首先,你需要一个已经训练好的 ONNX 模型。如果你已经有一个 ONNX 模型,可以直接进行转换。如果没有,可以选择一些常见的深度学习框架(如 PyTorch、TensorFlow)导出 ONNX 模型。例如,使用 PyTorch 的 torch.onnx.export
函数将分类模型转换为 ONNX 格式。
2. 使用 trtexec 工具转换 ONNX 模型
trtexec
是 TensorRT 的一个命令行工具,可以很方便地将 ONNX 模型转换为 TensorRT 引擎文件。你可以通过以下命令将 ONNX 模型转换为 TRT 模型:
trtexec --onnx=your_model.onnx --saveEngine=your_model.trt --fp16
其中,--onnx
参数指定了你的 ONNX 模型文件,--saveEngine
指定了生成的 TensorRT 引擎文件名,--fp16
启用 FP16 精度以加速推理。如果你使用 INT8 量化模型,还需要准备校准数据,并使用 --int8
参数。
3. 部署到板子上
转换完成后,你可以将生成的 .trt
引擎文件部署到你的嵌入式设备上。这里以使用 C++ 编写的推理代码为例,演示如何加载 TensorRT 模型并进行推理。
示例代码讲解
1、日志记录器
TensorRT 需要一个日志记录器来捕获警告和错误信息。你可以通过实现 ILogger
接口来过滤输出。
class Logger : public nvinfer1::ILogger {
public:
void log(Severity severity, const char* msg) noexcept override {
if (severity != Severity::kINFO) {
std::cout << "[TensorRT] " << msg << std::endl;
}
}
} gLogger;
2、加载模型
使用 nvinfer1::IRuntime
加载从文件中保存的 TensorRT 引擎。
nvinfer1::ICudaEngine* loadEngine(const std::string& engineFile) {
std::ifstream file(engineFile, std::ios::binary);
if (!file) {
std::cerr << "Failed to open engine file: " << engineFile << std::endl;
return nullptr;
}
file.seekg(0, file.end);
size_t fileSize = file.tellg();
file.seekg(0, file.beg);
std::vector<char> engineData(fileSize);
file.read(engineData.data(), fileSize);
nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(gLogger);
nvinfer1::ICudaEngine* engine = runtime->deserializeCudaEngine(engineData.data(), fileSize);
runtime->destroy();
return engine;
}
3、模型初始化和推理
通过 loadEngine
加载模型并创建推理上下文,然后使用 enqueueV2
来进行推理。
// 初始化函数
void initializeModel(const std::string& engineFile) {
engine = loadEngine(engineFile);
if (!engine) {
std::cerr << "Failed to load engine." << std::endl;
exit(-1);
}
context = engine->createExecutionContext();
if (!context) {
std::cerr << "Failed to create execution context." << std::endl;
engine->destroy();
exit(-1);
}
}
4、推理流程
在推理过程中,你需要将图像转换为模型输入所需的格式,执行推理并获取结果。
std::vector<float> runInference(cv::Mat& test_img) {
// 图像预处理和推理代码
}
5、推理结果后处理
获取推理输出后,可以使用 softmax 对分类结果进行处理,这里以分类模型为例,输出最终的分类预测。
std::vector<float> probabilities = runInference(cut_img);
std::vector<std::string> prb = { "0", "1", "2", "3", "4", "5", "6" };
for (size_t i = 0; i < probabilities.size(); ++i) {
std::cout << prb[i] << ": " << probabilities[i] << std::endl;
}
4. 部署的注意事项
1、导入必要的库
在编写推理代码时,你需要导入 TensorRT 和 CUDA 相关的库。这些库是高效推理的核心,直接决定了模型在 NVIDIA 硬件上的运行效率。通常你需要确保以下库正确安装并配置好:
- TensorRT 库:TensorRT 是模型推理的核心库,负责加载和执行 TensorRT 引擎。
- CUDA:CUDA 是 NVIDIA 提供的 GPU 加速库,用于处理深度学习的并行计算任务。
2、不同设备的兼容性
不同的嵌入式设备可能有不同的硬件规格,例如 NVIDIA Jetson 系列设备(如 Jetson Nano、Jetson Xavier)与服务器端的 NVIDIA GPU 不完全相同。因此,在模型部署前,你可能需要为不同的设备生成专用的 TensorRT 引擎文件。trtexec
在转换过程中,会根据硬件规格(如 CUDA 版本、计算能力)自动调整优化。
具体操作如下:
trtexec --onnx=your_model.onnx --saveEngine=your_model.trt --fp16
3、精度模式选择
TensorRT 支持多种精度模式(如 FP16、INT8),这些模式可以显著提升推理速度,但并不是所有设备都支持这些精度。FP16 模式在大多数 Jetson 设备上都是支持的,而 INT8 模式则需要额外的校准数据,通常在推理性能和精度之间需要权衡。要使用 INT8 模式,你必须准备一批代表性的数据集用于校准。
trtexec --onnx=your_model.onnx --saveEngine=your_model_int8.trt --int8 --calib=<calibration_data_path>
4、内存管理
在推理代码中,尤其是在嵌入式设备上,内存资源非常有限,因此你需要特别注意内存的分配和释放。每次推理结束后,确保释放 GPU 上分配的内存,以避免内存泄漏。例如:
cudaFree(d_input);
cudaFree(d_output);
5. 结语
通过使用 trtexec
工具,可以方便地将 ONNX 模型转换为 TensorRT 引擎并部署到嵌入式设备上进行高效推理。通过 C++ 代码,你可以实现模型加载、推理和后处理的全过程。
这篇博客旨在帮助开发者快速了解如何使用 TensorRT 工具链将深度学习模型部署到嵌入式设备,并通过代码示例帮助你轻松上手。