ubuntu22.04 搭建 Pytorch环境

关于电脑

在这里插入图片描述

第一步 安装anaconda

1. 进入官网

链接: anaconda

2. 下载linux的sh版

在这里插入图片描述

3. 在对应位置输入

sh 文件名.sh

4. 选择 yes

在这里插入图片描述

5. 选择no

(我们需要自己配置环境)
在这里插入图片描述
安装完成anconda,接下来将要配置环境

第二步 完成安装后配置环境

1. 编辑环境变量

gedit ~/.bashrc

2. 添加内容

export PATH="/自己对应的路径名/anaconda3/bin:$PATH"

完成后如下图:
在这里插入图片描述

3.激活修改的内容

source ~/.bashrc

4. 测试

conda

若没有显示not fond 则表示安装成功
在这里插入图片描述

第三步 创建自己的虚拟环境

安装完成后,在当前终端输入:

source activate

即可进入base环境,这是我们使用anaconda安装环境后,本地默认环境

1. 创建自己的环境

环境名称为pytorch,可以替换成自己的名称

conda create -n pytorch

2. 进入刚刚创建的pytorch环境

conda activate pytorch

第四步在base环境下安装cuda

1. 安装 nvidia-cuda-toolkit 工具

sudo apt-get install nvidia-cuda-toolkit

2. 检查系统推荐显卡驱动,记录recommend选项

sudo ubuntu-drivers devices

在这里插入图片描述

3.添加驱动源

我是之前已经安装好了驱动(虽然不是recommend)所以没有这一步也没问题。

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update

4.在 软件和更新 选择 附加驱动

在这里插入图片描述
更新完成后按要求重启

5. 测试

nvidia-smi

在这里插入图片描述

6. 下载cuda

cuda官网
这边我下载的是cuda11.7(按照nvidia-smi推荐下载)

在这里插入图片描述
接下来按照如下选择去下载
(ubuntu 版本一定要正确)

在这里插入图片描述

7.安装cuda

按照下方给出的命令下载安装

wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run
sudo sh cuda_11.7.0_515.43.04_linux.run

注意在选择时不要勾选安装驱动

8. 环境配置

sudo gedit ~/.bashrc

在末尾加入如下内容
注意将路径替换为自己的路径

export PATH="/自己对应的路径名/anaconda3/bin:$PATH"
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/extras/CPUTI/lib64
export CUDA_HOME=/usr/local/cuda/bin
export PATH=$PATH:$LD_LIBRARY_PATH:$CUDA_HOME

9. 测试

source ~/.bashrc
nvcc -V

在这里插入图片描述
表示安装成功

第五步 在自己创建的虚拟环境中安装pytorch

1.进入官网

pytorch

2.终端进入自己的虚拟环境

source activate
conda activate pytorch

3.选择对应版本并安装

选择pytorch版本
选择好对应的系统
选择使用什么安装,conda里可以使用pip安装的
选择语言:python
选择cuda版本:我的版本是11.7没有这个选项,11.6也可以使用
在这里插入图片描述

4.在终端输入官网复制的命令

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116

在这里插入图片描述
我这里已经是安装完成,
至此,pytorch的安装已经完成

### 配置 Ubuntu 22.04 上的机器学习开发环境 #### 安装基础工具和依赖项 为了确保系统的编译和其他必要操作能够顺利进行,建议先安装一些基本的构建工具。执行以下命令可以完成这些软件包的安装: ```bash sudo apt update && sudo apt upgrade -y sudo apt install build-essential gcc g++ make -y ``` 这一步骤提供了编译源码所需的全部组件[^1]。 #### 安装 Nvidia 显卡驱动程序 对于大多数深度学习框架而言,GPU 加速是提高训练速度的关键因素之一。因此,在拥有 NVIDIA GPU 的情况下,应该优先考虑安装相应的显卡驱动程序。具体过程如下所示: 1. 添加官方 PPA 并更新本地索引; 2. 使用 `apt` 命令下载并安装最新的稳定版驱动; ```bash sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt-get update sudo ubuntu-driver autoinstall ``` 确认已成功加载新驱动之后重启计算机以使更改生效[^3]。 #### CUDA Toolkit 和 cuDNN 库部署 CUDA 是由 NVIDIA 开发的一个平行计算平台及应用编程接口(API),它允许开发者利用图形处理单元(GPU)来进行通用目的运算。而cuDNN 则是一套针对神经网络优化过的高性能基元函数库。两者都是加速深度学习模型训练不可或缺的部分。 访问[NVIDIA官网](https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&Version=22.04&Target_Type=deb_network),按照页面提示选择合适的版本号后获取对应的APT仓库地址,并将其加入到 `/etc/apt/sources.list.d/` 文件夹下的 `.list` 文件中去。接着运行下面这条指令即可自动完成整个安装流程: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda ``` 同样地,对于 cuDNN 来说也可以采取相似的方式——即前往官方网站寻找适用于当前系统的离线安装包链接,再借助于上述方法实现快速部署。 #### Anaconda 发行版 Python 及其虚拟环境创建 Anaconda 是一个开源的数据科学平台,内含大量预编译好的科学计算、数据分析等相关领域常用Python模块。通过Anaconda管理不同项目的独立工作空间不仅有助于减少冲突风险,而且还能简化依赖关系管理工作量。 首先从[官网上](https://www.anaconda.com/products/distribution#download-section)挑选适合自己的安装文件形式(推荐采用`.sh`脚本),随后依照终端中的指示逐步完成初始化配置任务。最后记得激活base根目录下默认存在的 conda 虚拟环境以便后续操作: ```bash bash ~/Downloads/Anaconda3-latest-Linux-x86_64.sh source ~/.bashrc conda activate base ``` 此时便可以在该环境中运用 Conda 工具链轻松安装 TensorFlow 或 PyTorch 这样的主流深度学习框架了。例如要建立一个新的名为 "ml_env" 的专属项目区,则只需输入下列语句就能一键搞定所有事情: ```bash conda create --name ml_env python=3.9 tensorflow-gpu pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia ``` 以上就是关于如何在 Ubuntu 22.04 LTS 版本操作系统之上建立起一套完整的机器学习开发环境的大致介绍。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值