微积分精简版复习提纲

微分方程

n阶微分方程

含有 a y ( n ) , a ≠ 0 ay^{(n)},a\ne 0 ay(n),a=0的式子叫做n阶微分方程.

一阶微分方程求法

可分离变量一阶微分方程

d y d x = f ( x ) g ( y ) d y g ( y ) = f ( x ) d x {dy\over dx } = f(x)g(y)\\ {dy\over g(y)} = f(x)dx dxdy=f(x)g(y)g(y)dy=f(x)dx

y/x形式齐次方程

d y d x = f ( y x ) 令 u = y x , y = u x ⇒ d y d x = x d u d x + u u + x d u d x = f ( u ) ⇒ d u f ( u ) − u = d x x {dy\over dx} = f({y\over x})\\ 令 u = {y\over x},y = ux\Rightarrow {dy\over dx} = x{du\over dx} + u\\ u + x{du\over dx} = f(u) \Rightarrow {du\over f(u)-u} = {dx\over x} dxdy=f(xy)u=xy,y=uxdxdy=xdxdu+uu+xdxdu=f(u)f(u)udu=xdx

一阶齐次线性微分方程

d y d x + P ( x ) y = 0 ⇒ d y d x = − P ( x ) y d y y = − P ( x ) d x ⇒ ln ⁡ ∣ y ∣ = − ∫ P ( x ) d x + C y = C e − ∫ P ( x ) d x {dy\over dx} + P(x)y = 0 \Rightarrow {dy\over dx} = -P(x)y\\ {dy\over y} = -P(x)dx \Rightarrow \ln|y| = -\int P(x)dx + C\\ y = Ce^{-\int P(x)dx} dxdy+P(x)y=0dxdy=P(x)yydy=P(x)dxlny=P(x)dx+Cy=CeP(x)dx

一阶非齐次线性微分方程

d y d x + P ( x ) y = Q ( x ) ⇒ y = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x d x + C ] y = C e − ∫ P ( x ) d x + e − ∫ P ( x ) d x ∫ Q ( x ) e ∫ P ( x ) d x d x 注 : 这 个 y 的 形 式 就 是 通 解 + 特 解 的 形 式 , 前 面 的 为 齐 次 方 程 通 解 , 后 面 是 个 特 解 {dy\over dx} + P(x)y = Q(x)\Rightarrow y = e^{-\int P(x)dx}[\int Q(x)e^{\int P(x)dx}dx + C]\\ y = Ce^{-\int P(x)dx} + e^{-\int P(x)dx}\int Q(x)e^{\int P(x)dx}dx\\ 注 : 这个y的形式就是通解 + 特解的形式,前面的为齐次方程通解,后面是个特解 dxdy+P(x)y=Q(x)y=eP(x)dx[Q(x)eP(x)dxdx+C]y=CeP(x)dx+eP(x)dxQ(x)eP(x)dxdx:y+,,

二阶微分方程

最常规的二阶

y ′ ′ = P ( x ) ⇒ y ′ = ∫ P ( x ) d x + C ⇒ y = ∬ P ( x ) d x d x + C 1 x + C 2 y'' = P(x) \Rightarrow y' = \int P(x)dx + C\Rightarrow y = \iint P(x)dxdx + C_1x + C_2 y=P(x)y=P(x)dx+Cy=P(x)dxdx+C1x+C2

没有y的二阶

y ′ ′ = f ( y ′ , x ) , 令 p = y ′ , d y ′ d x = d p d x d p d x = f ( p , x ) ⇒ p = P ( x ) + C 1 ⇒ y = Q ( x ) + C 1 x + C 2 y'' = f(y',x),令p=y',{dy'\over dx} = {dp\over dx}\\ {dp\over dx} = f(p,x) \Rightarrow p = P(x)+C_1\Rightarrow y = Q(x) + C_1x+C_2 y=f(y,x),p=y,dxdy=dxdpdxdp=f(p,x)p=P(x)+C1y=Q(x)+C1x+C2

没有x的二阶

y ′ ′ = f ( y ′ , y ) , 令 p = y ′ , d p d x = d p d y d y d x = p d p d y p d p d y = f ( p , y ) , 然 后 带 入 一 阶 的 情 况 求 解 即 可 . y'' = f(y',y),令p=y',{dp\over dx} = {dp\over dy}{dy\over dx} = p{dp\over dy}\\ p{dp\over dy} = f(p,y),然后带入一阶的情况求解即可. y=f(y,y),p=y,dxdp=dydpdxdy=pdydppdydp=f(p,y),.

高阶常系数微分方程

先 补 充 一 个 公 式 : e x i = sin ⁡ x + i cos ⁡ x , e a + b i = e a ( sin ⁡ b + i cos ⁡ b ) 先补充一个公式:e^{xi} = \sin x + i\cos x,e^{a+bi} = e^a(\sin b + i\cos b) :exi=sinx+icosx,ea+bi=ea(sinb+icosb)

齐次形式

a n y ( n ) + a n − 1 y ( n − 1 ) + ⋯ + a 0 y = 0 ⇒ 特 征 方 程 a n r n + a n − 1 r n − 1 + ⋯ + a 0 = 0 解 出 很 多 个 r , 对 于 每 个 是 k 重 根 的 r , 对 应 的 解 : { ( C 1 + C 2 x + ⋯ + C k x k ) e r x r 为 实 数 , 把 所 有 对 应 的 解 都 加 起 来 即 可 . e a x { ( C 1 + C 2 x + ⋯ + C k x k ) cos ⁡ ( b x ) + ( D 1 + D 2 x + ⋯ + D k x k ) sin ⁡ ( b x ) } r = a + b i , a − b i , 把 所 有 解 加 起 来 a_ny^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = 0\\ \Rightarrow_{特征方程}a_nr^n+a_{n-1}r^{n-1}+\cdots+a_0 = 0\\ 解出很多个r,对于每个是k重根的r,对应的解:\\ \begin{cases} (C_1+C_2x+\cdots+C_kx^k)e^{rx}\\\qquad r为实数,把所有对应的解都加起来即可.\\ e^{ax}\{(C_1+C_2x+\cdots+C_kx^k)\cos(bx) + (D_1+D_2x+\cdots+D_kx^k)\sin(bx)\}\\ \qquad r=a+bi,a-bi,把所有解加起来 \end{cases} any(n)+an1y(n1)++a0y=0anrn+an1rn1++a0=0r,kr,:(C1+C2x++Ckxk)erxr,.eax{(C1+C2x++Ckxk)cos(bx)+(D1+D2x++Dkxk)sin(bx)}r=a+bi,abi,

非齐次方程

非齐次方程的解的形式为齐次方程通解+特解.然后来讨论特解的形式
f ( y , y ′ , ⋯   , y ( n ) ) = P m ( x ) e a x 设 特 解 为 : y ∗ = x t e a x Q m ( x ) a 是 对 应 齐 次 方 程 的 t 重 特 征 根 ( 可 以 为 0 ) , Q m ( x ) 是 x 的 一 个 待 定 m 次 多 项 式 f(y,y',\cdots,y^{(n)}) = P_m(x)e^{ax}\\ 设特解为:\quad y^* = x^te^{ax}Q_m(x)\\ a是对应齐次方程的t重特征根(可以为0),Q_m(x)是x的一个待定m次多项式\\ f(y,y,,y(n))=Pm(x)eax:y=xteaxQm(x)at(0),Qm(x)xm

f ( y , y ′ , ⋯   , y ( n ) ) = e α x [ P m ( x ) sin ⁡ ( β x ) + Q n ( x ) cos ⁡ ( β x ) ] k 是 α + β i 的 重 数 , j = max ⁡ ( m , n ) , 则 对 应 的 特 解 为 : x k e α x [ P j ′ ( x ) sin ⁡ ( β x ) + Q j ′ ( x ) cos ⁡ ( β x ) ] f(y,y',\cdots,y^{(n)}) = e^{\alpha x}[P_m(x)\sin(\beta x) + Q_n(x)\cos(\beta x)]\\ k 是 \alpha + \beta i的重数,j=\max{(m,n)},则对应的特解为:\\ x^ke^{\alpha x}[P'_j(x)\sin(\beta x) + Q'_j(x)\cos(\beta x)] f(y,y,,y(n))=eαx[Pm(x)sin(βx)+Qn(x)cos(βx)]kα+βi,j=max(m,n),:xkeαx[Pj(x)sin(βx)+Qj(x)cos(βx)]

欧拉方程

∑ x n y ( n ) = f ( x ) , 令 x = e t , 然 后 转 化 x n y ( n ) = D ( D − 1 ) ⋯ ( D − n + 1 ) y , D = d d t \sum x^ny^{(n)} = f(x),令x=e^t,然后转化x^ny^{(n)} = D(D-1)\cdots(D-n+1)y,D={d\over dt} xny(n)=f(x),x=et,xny(n)=D(D1)(Dn+1)y,D=dtd

多元函数微分学

多元函数极限,连续,偏导

极限

lim ⁡ ( x − x 0 ) 2 + ( y − y 0 ) 2 < δ ∣ f ( x , y ) − A ∣ < Δ 则 lim ⁡ x → x 0 y → y 0 f ( x , y ) = A \lim_{\sqrt{(x-x0)^2+(y-y_0)^2}<\delta} |f(x,y) - A| < \Delta\\ 则\lim_{x\rightarrow x_0\\y\rightarrow y_0} f(x,y) = A (xx0)2+(yy0)2 <δlimf(x,y)A<Δxx0yy0limf(x,y)=A

连续

lim ⁡ x → x 0 , y → y 0 f ( x , y ) = f ( x 0 , y 0 ) , 那 么 在 这 个 点 连 续 \lim_{x\rightarrow x_0,y\rightarrow y_0} f(x,y) = f(x_0,y_0),那么在这个点连续 xx0,yy0limf(x,y)=f(x0,y0),

偏导

lim ⁡ Δ y → 0 f ( x , y + Δ y ) − f ( x , y ) Δ y = A lim ⁡ Δ x → 0 f ( x + Δ x , y ) − f ( x , y ) Δ x = A \lim_{\Delta y \rightarrow 0} {f(x,y+\Delta y)-f(x,y)\over \Delta y} =A\\ \lim_{\Delta x \rightarrow 0} {f(x+\Delta x,y)-f(x,y)\over \Delta x} =A Δy0limΔyf(x,y+Δy)f(x,y)=AΔx0limΔxf(x+Δx,y)f(x,y)=A

可微

f ( x + Δ x , y + Δ y ) − f ( x , y ) = A Δ x + B Δ y + o ( Δ 2 x + Δ 2 y ) f(x+\Delta x,y+\Delta y) - f(x,y) = A\Delta x+B\Delta y+o(\sqrt{\Delta^2 x+\Delta^2y}) f(x+Δx,y+Δy)f(x,y)=AΔx+BΔy+o(Δ2x+Δ2y )

它们之间的关系

偏 导 连 续 → 可 微 → 连 续 → 有 极 限 偏 导 连 续 → 可 微 → 可 偏 导 偏导连续 \rightarrow 可微 \rightarrow 连续 \rightarrow 有极限\\ 偏导连续 \rightarrow 可微 \rightarrow 可偏导

偏导数

计算图法(显式函数)

z = f ( x , y , u , v ) , u = p ( x , y ) , v = q ( x , y ) ∂ z ∂ x = f 1 ′ + f 3 ′ u x ′ + f 4 ′ v x ′ ∂ z ∂ y = f 2 ′ + f 3 ′ u y ′ + f 4 ′ v y ′ z = f(x,y,u,v),u=p(x,y),v=q(x,y)\\ {\partial z\over \partial x} = f'_1 + f'_3 u'_x + f'_4v'_x\\ {\partial z\over \partial y} = f'_2 + f'_3 u'_y + f'_4v'_y z=f(x,y,u,v),u=p(x,y),v=q(x,y)xz=f1+f3ux+f4vxyz=f2+f3uy+f4vy

隐函数

已 知 { F ( x , y , u , v ) = 0 G ( x , y , u , z ) = 0 u = p ( x , y ) v = q ( x , y ) , 以 下 求 对 x 的 导 数 首 先 求 出 以 下 两 个 式 子 { F 1 ′ + F 3 ′ u x ′ + F 4 ′ v x ′ = 0 G 1 ′ + G 3 ′ u x ′ + G 4 ′ v x ′ = 0 然 后 联 立 两 个 式 子 , 就 能 解 出 对 应 的 导 数 F x ′ , G x ′ . 已知\begin{cases} F(x,y,u,v) = 0\\ G(x,y,u,z) = 0\\ u = p(x,y)\\ v = q(x,y) \end{cases},以下求对x的导数\\ 首先求出以下两个式子 \begin{cases} F'_1 + F'_3u'_x + F'_4v'_x = 0\\ G'_1 + G'_3u'_x + G'_4v'_x = 0 \end{cases}\\ 然后联立两个式子,就能解出对应的导数F'_x,G'_x. F(x,y,u,v)=0G(x,y,u,z)=0u=p(x,y)v=q(x,y),x{F1+F3ux+F4vx=0G1+G3ux+G4vx=0,Fx,Gx.

极值与最值

设我们有个 函 数 F ( x , y ) , 导 数 F x ′ , F y ′ , F x y ′ ′ , F y x ′ ′ , F x x ′ ′ , F y y ′ ′ 函数F(x,y),导数F'_x,F'_y,F''_{xy},F''_{yx},F''_{xx},F''_{yy} F(x,y),Fx,Fy,Fxy,Fyx,Fxx,Fyy,然后我们求解下面的极

没有约束条件的极值问题

首先求出

{ F x ′ ( x 0 , y 0 ) = 0 F y ′ ( x 0 , y 0 ) = 0 的 点 ( x 0 , y 0 ) \begin{cases} F'_x(x_0,y_0) = 0\\ F'_y(x_0,y_0) = 0 \end{cases} 的点(x_0,y_0) {Fx(x0,y0)=0Fy(x0,y0)=0(x0,y0)

如果其对应的

[ F x x ′ ′ F x y ′ ′ F y x ′ ′ F y y ′ ′ ] = [ A B B C ] \begin{bmatrix} F''_{xx} & F''_{xy}\\ F''_{yx} & F''_{yy} \end{bmatrix}= \begin{bmatrix} A & B\\ B & C \end{bmatrix} [FxxFyxFxyFyy]=[ABBC]

如果正定: A > 0 , A C − B 2 > 0 A > 0,AC-B^2 > 0 A>0,ACB2>0则为极小值,如果负定 ( − A ) > 0 , ( − A ) ( − C ) − ( − B ) 2 > 0 (-A) > 0,(-A)(-C) - (-B)^2 > 0 (A)>0,(A)(C)(B)2>0则为极大值.

有约束条件的极值

假设约束条件是 T ( x , y ) T(x,y) T(x,y)然后方程是 F ( x , y ) F(x,y) F(x,y),已知的东西都一样.
F ( x , y ) + λ T ( x , y ) = 0 这 个 式 子 的 极 值 就 是 了 ! 需 要 单 独 判 断 一 下 T 的 边 界 F(x,y) + \lambda T(x,y) = 0\\这个式子的极值就是了!需要单独判断一下T的边界 F(x,y)+λT(x,y)=0!T
推导原理:
设 T ( x , y ) 构 成 了 一 个 隐 函 数 , 那 么 ∂ y ∂ x = − T x ′ T y ′ F x ′ = F 1 ′ + F 2 ′ × − T x ′ T y ′ = 0 ⇒ F 1 ′ F 2 ′ = T x ′ T y ′ ⇒ F 1 ′ T x ′ = F 2 ′ T y ′ F y ′ = F 2 ′ + F 1 ′ × − T y ′ T x ′ = 0 ⇔ ⇒ F 1 ′ F 2 ′ = T x ′ T y ′ 设 F 2 ′ T y ′ = − λ ⇒ { F 1 ′ + λ T x ′ = 0 F 2 ′ + λ T y ′ = 0 T = 0 ⇔ F ( x , y ) + λ T ( x , y ) 极 值 设T(x,y)构成了一个隐函数,那么{\partial y\over \partial x} = -{T'_x \over T'_y}\\ F'_x = F'_1 + F'_2 \times -{T'_x\over T'_y} = 0\Rightarrow {F'_1\over F'_2} = {T'_x\over T'_y}\Rightarrow {F'_1\over T'_x} = {F'_2\over T'_y}\\ F'_y = F'_2 + F'_1 \times -{T'_y\over T'_x} = 0\Leftrightarrow \Rightarrow {F'_1\over F'_2} = {T'_x\over T'_y}\\ 设{F'_2\over T'_y} = -\lambda \Rightarrow \\ \begin{cases} F'_1 + \lambda T'_x = 0\\ F'_2 + \lambda T'_y = 0\\ T = 0 \end{cases}\\ \Leftrightarrow F(x,y) + \lambda T(x,y) 极值 T(x,y),xy=TyTxFx=F1+F2×TyTx=0F2F1=TyTxTxF1=TyF2Fy=F2+F1×TxTy=0F2F1=TyTxTyF2=λF1+λTx=0F2+λTy=0T=0F(x,y)+λT(x,y)

方向导数

方向导数和梯度

方向导数是指向某个具体方向的导数,如果方向为 ( cos ⁡ α , cos ⁡ β ) (\cos \alpha,\cos \beta) (cosα,cosβ),那么方向导数就是 F x ′ cos ⁡ α + F y ′ cos ⁡ β F'_x\cos \alpha + F'_y \cos \beta Fxcosα+Fycosβ,原理推导式子为
lim ⁡ t → 0 + F ( x + t cos ⁡ α , y + t cos ⁡ β ) − F ( x , y ) t \lim_{t\rightarrow 0^+}{F(x+t\cos \alpha,y+t\cos \beta) - F(x,y)\over t} t0+limtF(x+tcosα,y+tcosβ)F(x,y)
然后有了梯度
∇ F = ( F x ′ , F y ′ ) \nabla F = (F'_x,F'_y) F=(Fx,Fy)
其中 ∣ ∇ F ∣ |\nabla F| F是方向导数的最大值,此时方向向量与 ∇ F \nabla F F同向.方向导数可以写成 ∇ F ⋅ e , e = { cos ⁡ α , cos ⁡ β , cos ⁡ γ } \nabla F \cdot e,e=\{\cos \alpha ,\cos \beta,\cos \gamma\} Fe,e={cosα,cosβ,cosγ}为方向向量.

切线,法线,切平面,法平面

切线和法平面是对直线来说的,直线通常可以由两个平面的交线确定.假设我们的两个平面为
{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} F(x,y,z) = 0\\ G(x,y,z) = 0 \end{cases} {F(x,y,z)=0G(x,y,z)=0
那么它的切向量就是
[ i j k F x ′ F y ′ F z ′ G x ′ G y ′ G z ′ ] = A i + B j + C k \begin{bmatrix} i & j & k\\ F'_x &F'_y &F'_z\\ G'_x & G'_y &G'_z \end{bmatrix} = Ai + Bj + Ck iFxGxjFyGykFzGz=Ai+Bj+Ck
然后我们来搞它的法平面,也就是与切线垂直的平面
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 , ( x 0 , y 0 , z 0 ) ∈ 线 A(x-x_0) + B(y-y_0) + C(z-z_0) = 0,(x_0,y_0,z_0)\in 线 A(xx0)+B(yy0)+C(zz0)=0,(x0,y0,z0)线
如果这个直线用的是参数方程的形式表示的话,也就是说
{ x = x ( t ) y = y ( t ) z = z ( t ) , t 为 参 数 \begin{cases} x = x(t)\\ y = y(t)\\ z = z(t) \end{cases},t为参数 x=x(t)y=y(t)z=z(t),t
那么它的切向量就是
( x t ′ ( t ) , y t ′ ( t ) , z t ′ ( t ) ) , t 为 参 数 (x'_t(t),y'_t(t),z'_t(t)),t为参数 (xt(t),yt(t),zt(t)),t
然后它的法平面就是
A = x t ′ ( t ) , B = y t ′ ( t ) , C = z t ′ ( t ) 的 情 况 了 A = x'_t(t),B=y'_t(t),C=z'_t(t)的情况了 A=xt(t),B=yt(t),C=zt(t)
法线和切平面是对一个平面方程来说的,一个平面方程通常可以写成 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0这个情况,然后我们研究它的法向量:
( F x ′ , F y ′ , F z ′ ) (F'_x,F'_y,F'_z) (Fx,Fy,Fz)
然后它的切平面,也就是跟法向量垂直的那个平面:
F x ′ ( x − x 0 ) + F y ′ ( y − y 0 ) + F z ′ ( z − z 0 ) = 0 , ( x 0 , y 0 , z 0 ) ∈ 平 面 F'_x(x-x_0)+F'_y(y-y_0)+F'_z(z-z_0) = 0,(x_0,y_0,z_0)\in 平面 Fx(xx0)+Fy(yy0)+Fz(zz0)=0,(x0,y0,z0)
这里需要注意这个法向量是朝着F式子增大的方向去的.比如 x 2 + y 2 + z 2 = 0 x^2+y^2+z^2=0 x2+y2+z2=0在第一象限的法向量是 ( 2 x , 2 y , 2 z ) (2x,2y,2z) (2x,2y,2z)全都是正的,也就是往 F F F增大的方向.

多元函数积分学

重积分

二重积分

二重积分是对面积微元进行积分,三重积分是对体积微元进行积分.

二重积分满足好几个性质:

  1. 可比性质 ∬ f d ρ < ∬ g d ρ , f < g \iint f d\rho < \iint g d\rho,f < g fdρ<gdρ,f<g
  2. 估值性质 m < f < M , m S < ∬ f d ρ < M S m<f<M,mS<\iint f d\rho<MS m<f<M,mS<fdρ<MS
  3. 中值定理 ∬ f d ρ = f ( x 0 , y 0 ) S \iint f d\rho = f(x_0,y_0)S fdρ=f(x0,y0)S

二重积分的积分顺序
∬ F d ρ = ∫ x 0 x 1 ∫ y 0 y 1 d y d x = ∫ y 0 y 1 ∫ x 0 x 1 d x d y \iint F d\rho = \int_{x_0}^{x_1} \int_{y_0}^{y_1}dydx = \int_{y_0}^{y_1} \int_{x_0}^{x_1}dxdy Fdρ=x0x1y0y1dydx=y0y1x0x1dxdy
需要注意的是边界的判断,如果是函数的话,要画出区域然后换序.

当然也可以进行换序到极坐标方程上
∬ S F d s = ∫ ∫ ρ d ρ d θ , d s = d ρ ( ρ d θ ) \iint_S F ds = \int \int \rho d \rho d\theta,ds = d\rho (\rho d\theta) SFds=ρdρdθ,ds=dρ(ρdθ)

三重积分

对体积微元进行积分啊! ∭ F d v \iiint F dv Fdv,上面那几个性质对于连续的F都成立.下面着重介绍换序的东西.换序柱坐标
d v = d z d ρ ( ρ d θ ) dv = dz d\rho (\rho d\theta) dv=dzdρ(ρdθ)
换序球坐标, γ \gamma γ是与 z z z正向的夹角
d v = d ρ ( ρ d γ ) ( ρ sin ⁡ γ d θ ) = ρ 2 sin ⁡ γ d ρ d θ d γ dv = d\rho (\rho d\gamma)(\rho \sin \gamma d\theta) = \rho^2 \sin \gamma d\rho d\theta d\gamma dv=dρ(ρdγ)(ρsinγdθ)=ρ2sinγdρdθdγ

常用重积分公式

∫ − π π cos ⁡ ( n x ) d x = ∫ − π π sin ⁡ ( n x ) d x = 0 ∫ − π π cos ⁡ ( m x ) sin ⁡ ( n x ) d x = 0 ∫ − π π cos ⁡ ( m x ) cos ⁡ ( n x ) d x = ∫ − π π sin ⁡ ( m x ) sin ⁡ ( n x ) d x = { 0 m ≠ n π m = n ∫ 0 π cos ⁡ ( m x ) cos ⁡ ( n x ) d x = ∫ 0 π sin ⁡ ( m x ) sin ⁡ ( n x ) d x = { 0 m ≠ n π 2 m = n I n = ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n I n − 2 ( n − 1 ) ! ! n ! ! n = 2 k + 1 ( n − 1 ) ! ! n ! ! π 2 n = 2 k \int_{-\pi}^{\pi} \cos(nx)dx = \int_{-\pi}^{\pi}\sin(nx)dx = 0\\ \int_{-\pi}^{\pi} \cos(mx)\sin(nx) dx = 0\\ \int_{-\pi}^{\pi} \cos(mx)\cos(nx)dx = \int_{-\pi}^{\pi} \sin(mx)\sin(nx)dx=\begin{cases}0&m\ne n\\\pi &m=n\end{cases}\\ \int_{0}^{\pi}\cos(mx)\cos(nx)dx=\int_{0}^{\pi}\sin(mx)\sin(nx)dx=\begin{cases}0&m\ne n\\{\pi\over 2}&m=n\end{cases}\\ I_n = \int_{0}^{\pi\over 2}\sin^n xdx=\int_{0}^{\pi\over 2}\cos^n xdx = \begin{cases}{n-1\over n}I_{n-2}\\{(n-1)!!\over n!!}&n=2k+1\\{(n-1)!!\over n!!}{\pi\over 2}&n=2k\end{cases} ππcos(nx)dx=ππsin(nx)dx=0ππcos(mx)sin(nx)dx=0ππcos(mx)cos(nx)dx=ππsin(mx)sin(nx)dx={0πm=nm=n0πcos(mx)cos(nx)dx=0πsin(mx)sin(nx)dx={02πm=nm=nIn=02πsinnxdx=02πcosnxdx=nn1In2n!!(n1)!!n!!(n1)!!2πn=2k+1n=2k

第一类积分

第一类曲线积分

它是对弧长积分.
∫ F d s = { ∫ F 1 + y x ′ 2 d x y = y ( x ) ∫ F ( x t ′ ) 2 + ( y t ′ ) 2 d t { x = x ( t ) y = y ( t ) ∫ F ρ 2 + ρ ′ 2 d ρ ρ = ρ ( θ ) \int F ds = \begin{cases} \int F \sqrt{1+{y'_x}^2}dx&y=y(x)\\ \int F \sqrt{(x'_t)^2+(y'_t)^2}dt&\begin{cases}x=x(t)\\y=y(t)\end{cases}\\ \int F \sqrt{\rho^2+\rho'^2}d\rho&\rho = \rho(\theta) \end{cases} Fds=F1+yx2 dxF(xt)2+(yt)2 dtFρ2+ρ2 dρy=y(x){x=x(t)y=y(t)ρ=ρ(θ)
如果有对称性的话,那么可以利用对称性进行计算

第一类曲面积分

这个东西是对面积微元进行积分
∬ + S / − S , z = z ( x , y ) F ( x , y , z ) d S = ∬ S F ( x , y , z ( x , y ) ) 1 + z x ′ 2 + z y ′ 2 d x d y \iint_{+S/-S,z=z(x,y)} F(x,y,z) dS = \iint_S F(x,y,z(x,y)) \sqrt{1+z'^2_x+z'^2_y}dxdy +S/S,z=z(x,y)F(x,y,z)dS=SF(x,y,z(x,y))1+zx2+zy2 dxdy
第二种方法是利用积分曲面的对称性和积分函数的奇偶性。具体原理跟上面曲线积分的奇偶性相同。

第三种方法是利用积分曲线的轮换对称性,只要变量换了区域不变,那么变量换了积分值也不会变。
∬ S x 2 d S , S : x 2 + y 2 + z 2 = 1 = ∬ S y 2 d S = ∬ z 2 d S = 1 3 ∬ S R 2 d S = 4 π R 4 3 \iint_S x^2 dS,S:x^2+y^2+z^2=1\\ = \iint_S y^2 dS = \iint z^2 dS = {1\over 3}\iint_S R^2dS = {4\pi R^4 \over 3} Sx2dS,S:x2+y2+z2=1=Sy2dS=z2dS=31SR2dS=34πR4

第二类积分

第二类积分是有向积分。

第二类曲线积分

∫ A B { F ( x , y ) , Q ( x , y ) } ⋅ ( d x , d y ) = − ∫ B A { F ( x , y ) , Q ( x , y ) } ⋅ ( d x , d y ) = ∫ L ( F cos ⁡ α + G cos ⁡ β ) d s ( cos ⁡ α , cos ⁡ β ) 是 L 的 方 向 余 弦 \int_{AB} \{F(x,y),Q(x,y)\} \cdot ({dx,dy}) = -\int_{BA}\{F(x,y),Q(x,y)\} \cdot(dx,dy) = \int_L (F\cos \alpha+G\cos \beta)ds\\ (\cos \alpha,\cos \beta)是L的方向余弦 AB{F(x,y),Q(x,y)}(dx,dy)=BA{F(x,y),Q(x,y)}(dx,dy)=L(Fcosα+Gcosβ)ds(cosα,cosβ)L

计算方法:

  1. 直接法

L = { x = x ( t ) y = y ( t ) , t ∈ [ a , b ] ∫ L F d x + G d y = ∫ L F x t ′ + G y t ′ d t L = \begin{cases}x = x(t)\\y=y(t)\end{cases},t\in [a,b]\\ \int_L F dx + G dy = \int_L Fx'_t+Gy'_tdt L={x=x(t)y=y(t),t[a,b]LFdx+Gdy=LFxt+Gytdt

  1. 格林公式,要求L是正向闭曲线(沿着L前进,区域在其左侧)

∫ L P d x + Q d y = ∬ S ∂ Q ∂ x − ∂ P ∂ y d x d y \int_L P dx + Qdy = \iint_S{\partial Q\over \partial x} - {\partial P\over \partial y} dxdy LPdx+Qdy=SxQyPdxdy

  1. 利用线积分与路径无关的结论

前 提 : ∂ Q ∂ x = ∂ P ∂ y 结 论 : ∫ L P d x + Q d y = ∫ L 0 P ( x , y 0 ) d x + ∫ L 1 Q ( x 0 , y ) d y , L 0 + L 1 = L 前提:{\partial Q\over \partial x} = {\partial P\over \partial y}\\ 结论:\int_L Pdx+Qdy = \int_{L0} P(x,y_0)dx + \int_{L1}Q(x_0,y)dy,L_0+L_1=L xQ=yPLPdx+Qdy=L0P(x,y0)dx+L1Q(x0,y)dy,L0+L1=L

三维情况与上面差不多,然后补充一下:

  1. 直接法

{ x = x ( t ) y = y ( t ) z = z ( t ) , t ∈ [ a , b ] ∫ L P d x + Q d y + R d z = ∫ L P x ′ + Q y ′ + R z ′ d t \begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases},t\in [a,b]\\ \int_L Pdx+Qdy+Rdz = \int_L Px'+Qy'+Rz' dt x=x(t)y=y(t)z=z(t),t[a,b]LPdx+Qdy+Rdz=LPx+Qy+Rzdt

  1. 斯托克斯公式,要求L是S的正向。这个东西叫做旋度

∫ L P d x + Q d y + R d z = ∬ S [ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ] \int_L Pdx + Qdy+Rdz = \iint_S \begin{bmatrix} dydz & dzdx & dxdy\\ {\partial \over \partial x} & {\partial \over \partial y} & {\partial \over \partial z}\\ P & Q &R \end{bmatrix} LPdx+Qdy+Rdz=SdydzxPdzdxyQdxdyzR

第二类曲面积分

应该是一个向量 { P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) } \{P(x,y,z),Q(x,y,z),R(x,y,z)\} {P(x,y,z),Q(x,y,z),R(x,y,z)}分别对 d y d z , d z d x , d x d y dydz,dzdx,dxdy dydz,dzdx,dxdy曲面的积分。这个东西叫做散度。方向与曲面选择相关。
∬ S P d y d z + Q d z d x + R d x d y = ∬ S ( P cos ⁡ a + Q cos ⁡ b + R cos ⁡ c ) d S \iint_S Pdydz + Qdzdx+Rdxdy = \iint_S(P\cos a+Q\cos b+R\cos c)dS SPdydz+Qdzdx+Rdxdy=S(Pcosa+Qcosb+Rcosc)dS
计算方法:

  1. 直接法

∬ S P ( x , y , z ) d y d z = − + ∬ P ( x ( y , z ) , y , z ) d y d z , 正 负 号 选 择 与 S 的 法 向 量 与 o x 夹 角 有 关 \iint_S P(x,y,z)dydz = ^+_-\iint P(x(y,z),y,z)dydz,正负号选择与S的法向量与ox夹角有关 SP(x,y,z)dydz=+P(x(y,z),y,z)dydz,Sox

  1. 直接法*2

∬ S P d y d z + Q d z d x + R d x d y = ∬ S [ P ( − ∂ z ∂ x ) + Q ( − ∂ z ∂ y ) + R ] d x d y 可 以 认 为 是 利 用 了 d z d x = − ∂ z ∂ x ? \iint_S P dydz + Q dzdx + Rdxdy = \iint_S [P(-{\partial z\over \partial x}) + Q(-{\partial z\over \partial y}) + R]dxdy\\ 可以认为是利用了 {dz\over dx} = -{\partial z\over \partial x}? SPdydz+Qdzdx+Rdxdy=S[P(xz)+Q(yz)+R]dxdydxdz=xz?

  1. 高斯公式,要求S是V的外侧的闭曲面。如果不是的话,可以考虑搞成一个封闭的曲面。这东西就是散度

∬ S P d y d z + Q d z d x + R d x d y = ∭ V ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z d V \iint_S Pdydz + Qdzdx+Rdxdy = \iiint_V {\partial P\over \partial x} + {\partial Q\over \partial y} + {\partial R\over \partial z} dV SPdydz+Qdzdx+Rdxdy=VxP+yQ+zRdV

无穷级数

常数项级数

数列 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,,an是一个数列,然后称 S = ∑ a i S = \sum a_i S=ai为无穷奇数。如果它收敛于某个数值,那么就称这个数列收敛于这个数值。如果没有极限,那么就称它发散。

对于无穷级数,它满足以下几个性质:

  1. k a n ka_n kan a n a_n an的敛散性相同。
  2. ( a n ) − + ( b n ) = c n (a_n)^+_- (b_n) = c_n (an)+(bn)=cn收敛+收敛=收敛。发散+发散=不确定。收敛+发散=发散
  3. 改变前面有限项不影响敛散性
  4. 收敛加括号必收敛,发散加括号可能收敛,加括号发散必发散
  5. 收敛必要条件 lim ⁡ n → + ∞ a n = 0 \lim_{n\rightarrow +\infty}a_n=0 limn+an=0

正项级数

正项级数敛散性判别方法(下面都是充分条件):

  1. 比较判别法

0 ≤ a n ≤ b n , ∑ b n , ∑ a n 前 收 敛 后 必 收 敛 , 后 发 散 前 必 发 散 0 \leq a_n \leq b_n,\sum b_n,\sum a_n\\ 前收敛后必收敛,后发散前必发散 0anbn,bn,an

  1. 比较判别法的比值形式

常用的几个做b的函数: 1 n p {1\over n^p} np1,p大于1收敛,小于等于1发散。 a q n aq^n aqn,q大于等于1发散,小于1收敛。
lim ⁡ n → + ∞ a n b n = l { l = + ∞ , b 发 散 a 必 发 散 l = 0 , b 收 敛 a 必 收 敛 l = e , e ∈ R , b 和 a 同 敛 散 性 \lim_{n\rightarrow +\infty} {a_n\over b_n} = l\\ \begin{cases} l = +\infty&,b发散a必发散\\ l = 0&,b收敛a必收敛\\ l = e,e\in \R&,b和a同敛散性 \end{cases} n+limbnan=ll=+l=0l=e,eR,ba,ba,ba

  1. 比值判别法

常见的是 n ! n! n!
lim ⁡ n → + ∞ a n + 1 a n = l { l > 1 , 发 散 l < 1 , 收 敛 l = 1 , 不 一 定 \lim_{n\rightarrow +\infty} {a_{n+1}\over a_n} = l\\ \begin{cases} l > 1&,发散\\ l < 1&,收敛\\ l = 1&,不一定 \end{cases} n+limanan+1=ll>1l<1l=1,,,

  1. 根值判别法

常见的是 n n , n ! , n ! n = 1 n^n,n!,\sqrt[n]{n!} = 1 nn,n!,nn! =1
lim ⁡ n → + ∞ a n n = l { l > 1 , 发 散 l < 1 , 收 敛 l = 1 , 不 一 定 \lim_{n\rightarrow +\infty}\sqrt[n]{a_n} = l\\ \begin{cases} l > 1&,发散\\ l < 1&,收敛\\ l = 1&,不一定 \end{cases} n+limnan =ll>1l<1l=1,,,

交错级数

( − 1 ) n u n , u n > 0 (-1)^n u_n,u_n>0 (1)nun,un>0

莱布尼兹判定法则(充分条件),条件为以下两个:

  1. u n + 1 ≤ u n , n 对 所 有 实 数 都 成 立 u_{n+1} \leq u_n,n对所有实数都成立 un+1un,n
  2. lim ⁡ n → + ∞ u n = 0 \lim_{n\rightarrow +\infty} u_n = 0 limn+un=0

或者是它是绝对收敛的。

任意项级数

绝对值构成的级数收敛,那么称它为绝对收敛。本身收敛,绝对值构成的级数发散,则称为条件收敛。

绝对收敛级数的原级数必定收敛,条件收敛级数的正项或负项构成的级数一定发散。

幂级数

函数项级数是指 ∑ u i ( x ) = u 1 ( x ) + u 2 ( x ) + … \sum u_i(x) = u_1(x)+u_2(x)+\dots ui(x)=u1(x)+u2(x)+。如果在 x 0 x_0 x0处收敛,则称这个点为收敛点.收敛点构成的集合称为收敛域.和函数是指在收敛域内的 ∑ u i ( x ) \sum u_i(x) ui(x).

幂级数是指 ∑ a n ( x − x 0 ) n \sum a_n(x-x_0)^n an(xx0)n称为 x − x 0 x-x_0 xx0的幂级数. ∑ a n x n \sum a_n x^n anxn称为x的幂级数.

收敛半径与收敛域

阿贝尔引理:关于x的幂级数如果在 x 1 ≠ 0 x_1\ne 0 x1=0处收敛,那么它在 ∣ x ∣ < ∣ x 1 ∣ |x|<|x_1| x<x1的地方绝对收敛.如果在 x 2 x_2 x2发散,那么在 ∣ x ∣ > ∣ x 2 ∣ |x| > |x_2| x>x2都发散.

收敛半径:绝对收敛的开区域.可以为0,也可以为无穷.这两个特殊情况是人为定义的.

求收敛半径: lim ⁡ n → + ∞ ∣ a n + 1 a n ∣ = l \lim_{n\rightarrow +\infty} |{a_{n+1}\over a_n}| = l limn+anan+1=l,那么 1 l 1\over l l1的扩展定义就是R.同样 lim ⁡ n → + ∞ a n n = l \lim_{n\rightarrow +\infty} \sqrt[n]{a_n} = l limn+nan =l也有相同的结论成立.

收敛区间是 ( − R , R ) (-R,R) (R,R),收敛域需要单独判断端点处的敛散情况.

四则运算性质

加减乘之后,收敛半径取两个收敛半径的最小值.

除法定义为乘法的逆运算

幂级数展开

如果 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处任意阶可导,则展开成泰勒级数为
∑ n = 0 + ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n \sum_{n=0}^{+\infty} {f^{(n)}(x_0)\over n!}(x-x_0)^n n=0+n!f(n)(x0)(xx0)n
特殊一点搞到x=0的展开,叫做麦克劳林级数
∑ n = 0 + ∞ f ( n ) ( 0 ) n ! x n \sum_{n=0}^{+\infty}{f^{(n)}(0)\over n!}x^n n=0+n!f(n)(0)xn
泰勒级数的 x 1 x_1 x1点收敛于原函数的判定条件为
lim ⁡ n → + ∞ R n ( x 1 ) = lim ⁡ n → + ∞ f ( n + 1 ) ( t ) ( n + 1 ) ! ( x − x 0 ) ( n + 1 ) , t ∈ [ x 0 , x 1 ] \lim_{n\rightarrow +\infty} R_n(x_1) = \lim_{n\rightarrow +\infty}{f^{(n+1)}(t)\over (n+1)!}(x-x_0)^{(n+1)},t\in [x_0,x_1] n+limRn(x1)=n+lim(n+1)!f(n+1)(t)(xx0)(n+1),t[x0,x1]
常用的麦克劳林展开式
1 1 − x = ∑ n = 0 + ∞ x n 1 1 + x = ∑ n = 0 ∞ ( − x ) n e x = ∑ n = 0 + ∞ x n n ! sin ⁡ x = ∑ n = 0 + ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! cos ⁡ x = ∑ n = 0 + ∞ ( − 1 ) n x 2 n ( 2 n ) ! ln ⁡ ( 1 + x ) = ∫ 0 x ∑ n = 0 + ∞ ( − 1 ) n t n d t = ∑ n = 0 + ∞ ( − 1 ) n x n + 1 n + 1 {1\over 1-x}= \sum_{n=0}^{+\infty} x^n\\ {1\over 1+x} = \sum_{n=0}^{_\infty} (-x)^n\\ {e^x} = \sum_{n=0}^{+\infty} {x^n\over n!}\\ \sin x = \sum_{n=0}^{+\infty} (-1)^n {x^{2n+1}\over (2n+1)!}\\ \cos x = \sum_{n=0}^{+\infty} (-1)^n {x^{2n}\over (2n)!}\\ \ln(1+x) = \int_0^{x} \sum_{n=0}^{+\infty}(-1)^n t^n dt = \sum_{n=0}^{+\infty}(-1)^n {x^{n+1}\over n+1} 1x1=n=0+xn1+x1=n=0(x)nex=n=0+n!xnsinx=n=0+(1)n(2n+1)!x2n+1cosx=n=0+(1)n(2n)!x2nln(1+x)=0xn=0+(1)ntndt=n=0+(1)nn+1xn+1

傅里叶级数

三角函数的正交性

∫ − π π sin ⁡ n x d x = ∫ − π π cos ⁡ n x d x = ∫ − π π sin ⁡ n x cos ⁡ m x d x = 0 ∫ − π π sin ⁡ n x cos ⁡ m x d x = { 0 m ≠ n π m = n \int_{-\pi}^{\pi}\sin nx dx = \int_{-\pi}^{\pi}\cos nx dx = \int_{-\pi}^{\pi}\sin nx \cos mx dx = 0\\ \int_{-\pi}^{\pi} \sin nx \cos mx dx = \begin{cases} 0&m\ne n\\ \pi &m=n \end{cases} ππsinnxdx=ππcosnxdx=ππsinnxcosmxdx=0ππsinnxcosmxdx={0πm=nm=n

傅里叶级数

a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x , n = 0 , 1 , 2 , … b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x , n = 1 , 2 , … a_n = {1\over \pi} \int_{-\pi}^{\pi}f(x)\cos nx dx, n = 0,1,2,\dots\\ b_n = {1\over \pi} \int_{-\pi}^{\pi}f(x)\sin nx dx,n = 1,2,\dots an=π1ππf(x)cosnxdx,n=0,1,2,bn=π1ππf(x)sinnxdx,n=1,2,

展开所构成的傅里叶级数为
f ( x ) ∼ a 0 2 + ∑ n = 1 + ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x) \sim {a_0\over 2} + \sum_{n=1}^{+\infty}(a_n \cos nx + b_n \sin nx) f(x)2a0+n=1+(ancosnx+bnsinnx)

收敛性定理

如果一个函数在周期区间 [ − π , π ] [-\pi,\pi] [π,π]

  1. 除了有限个第一类间断点(两侧极值都有)连续
  2. 仅存在有限个极值点

则其傅里叶级数在 [ − π , π ] [-\pi,\pi] [π,π]上处处收敛于,而且:

  1. f ( x ) f(x) f(x),连续点
  2. f ( x − ) + f ( x + ) 2 {f(x^-)+f(x^+)\over 2} 2f(x)+f(x+)间断点
  3. f ( − π + ) + f ( π − ) 2 f(-\pi^+) + f(\pi^-)\over 2 2f(π+)+f(π), x = − + π x = ^+_- \pi x=+π

一个普通周期函数

如果这个周期函数的周期区间是 [ − l , l ] [-l,l] [l,l],那么有以下的展开
X = x π l , X ∈ [ − π , π ] a n = 1 π ∫ − π π f ( x ) cos ⁡ n X d X = π l π ∫ − l l f ( x ) cos ⁡ n π x l d x = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x b n 同 理 \begin{aligned} X &= x{\pi \over l},X\in [-\pi,\pi]\\ a_n &= {1\over \pi}\int_{-\pi}^{\pi} f(x) \cos nX dX\\ &= {\pi\over l\pi}\int_{-l}^{l} f(x) \cos {n\pi x\over l}dx\\ &= {1\over l}\int_{-l}^{l}f(x)\cos {n\pi x\over l}dx\\ b_n&同理 \end{aligned} Xanbn=xlπ,X[π,π]=π1ππf(x)cosnXdX=lππllf(x)coslnπxdx=l1llf(x)coslnπxdx

  • 5
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值