【数据结构】最短路径算法 之 弗洛伊德算法

本文介绍了最短路径的基本概念,并详细讲解了弗洛伊德算法在求解每一对顶点之间最短路径的问题,对比了与迪杰斯特拉算法的区别,强调了弗洛伊德算法在实现上的简洁性。通过逻辑和实现思路阐述了算法的运行过程,涉及邻接矩阵存储结构。
摘要由CSDN通过智能技术生成

基本概念

最简单的最短路径是求中转次数最少的路径,而不考虑每条边的权值。而在实际问题中,路径长度的度量就不再是路径上的边数,而是路径上所有边的权值之和

有向网中,习惯上称路径的第一个顶点为源点(Source),最后一个顶点为终点(Destination)

下面主要讨论两种最常见的最短路径问题:

一、从某个源点到其余顶点的最短路径;

二、求每一对顶点之间的最短路径。

迪杰斯特拉(Dijkstra)算法用于求解第一种问题,时间复杂度为O(n²)弗洛伊德(Floyd)算法用于求解第二种问题,时间复杂度为O(n³)

从实现形式上来说,弗洛伊德算法比迪杰斯特拉算法更为简洁

 

弗洛伊德算法(顶点对)

求解每一对顶点之间的最短路径有两种方法:

一种是n次调用迪杰斯特拉算法;

另一种是采用下面介绍的弗洛伊德算法。

两种算法的时间复杂度均为O(n³),但弗洛伊德算法的形式更为简洁。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值