3D Point Cloud Registration for Localization using a Deep Neural Network Auto-Encoder阅读笔记

标签: 点云配准 计算机视觉 神经网络 机器学习
23人阅读 评论(0) 收藏 举报

  这是一篇采用机器学习的点云配准的论文,简单来说就是通过将点云用一个个球体分成很多个小快,对每一块投影成深度图,然后采用深度神经网络对深度图进行特征压缩,最后压缩成一个5×2的矩阵做为一个特征,也就是我们所说的描述子(descriptor)。通过这些描述子的位置关系可以进行粗配准,最后文章也还是采用了ICP进行精配准。原文链接:3D Point Cloud Registration for Localization Using a Deep Neural Network Auto-Encoder


LORAX(LOcalization by Registration using a deep Auto-encoder reduced Cover Set)

  文中提出了一个超点(Super-Points,SP)的概念,其实就是由部分点云构成的一个大的集合,构成方法会在下文中提出。文中首先定义了一个全局场景是有大型的户外场景融合构成,然后定义了本地场景是在全局场景的一个随机位置随机角度采集的。文章的总体思路为以下几步:
  

1. Random Sphere Cover Set (RSCS)

  使用超点来定义整个处理流程的基本单元。为了能够覆盖点云的绝大部分,文中采用了以下的迭代步骤来定义这些超点:
  

  • 随机选择一个不属于任何SP的点P
  • 使用点P做为中心,以Rsphere为半径,所有位于这么一个圆内的点都被定义为这个新的SP所包含的点

Rsphere的计算公式如下:

Rsphere(34π0.642mVloval)13

  其中,0.64的意思时在这种随机的球面分块中,不重复的球面将占到整个物体的64%Vloval为包含这个待处理点云的球面的体积。m是指最后阶段用于匹配的特征的个数,由于后面会有算法剔除掉一些特征,所以这里取2m以保证最后可以用来选择的特征的个数。

2. Selection of a Normalized Local Coordinate System for each Super-point

  这一步是为每个SP建立一个归一化的本地坐标系,目的是为了下一步压缩成深度图做准备。坐标的原点即为SP的质心(centriod),三个轴的方向是通过对这个SP的协方差矩阵(covariance matrix)进行SVD(Singular Value Decomposition)分解得到。Z轴被设定为第三个特征向量。通过把SP分为离散的弧度片并统计为极线直方图(polar ),x轴为值最高的方向。

3. Depth Map Projection

  在每个点被转化为本地坐标系后就可以直接经行比较,但是由于点的密度的不同以及随机噪声,比较的结果会十分不可靠。因此需要对其经行降维处理。所有的点的x,y轴被投影在一个dim1×dim1的图片网格上,而他们的高度则通过求平均映射成深度图。最后把这个图片剪裁成dim2×dim2(文中取dim1=64dim2=32)以消去SP的圆形边界,如下图中红色虚线框所示:
  

深度图

4. Saliency Detection and Filtration

  为了提高配准的速度和质量,文中通过密度(density),几何性质(geometric properties),显著性水平(saliency levels)这三个方面来减少不相关的SPs。
  

  • Density Test:如果一个SP包含的点少于Nd将会被删去,如果他与他的K近邻个SP的包含的点明显要少的话也会被删去
  • Geometric Quality Test:所有的SP的Z轴都会被记录下来,那些Z轴值较低的SP,也就是说比较平的平面,会被删去
  • Saliency Test:将全局点云的SP的深度图转换为dim22长的列向量,并对其进行PCA分析,并利用前三个特征向量对其进行重建,拥有相同的几何信息的SP将会被删去。这样避免了分布在不同区域但是有着类似的SP的匹配的可能性

5. Deep Auto-Encoder Dimension Reduction

  为了压缩特征,才用了一个拥有4个全连接的隐藏层,每一层和输入的dropout之间采用sigmoid非线性激励函数。其网络结构如下:
  

这里写图片描述

  
  更多的神经网络部分可以参考原文,最终每个SP被压缩成如下图中间层Compact Representation所示的5×2的这么一个矩阵,称为SAF(The SP auto-encoder based Feature)将被用于配准。
  
这里写图片描述

6. Selecting Candidates for Matching

  通过检测SAF之间的欧式距离,来自本地的每个SP都与来自全局的K领域个SP建立配对关系,若从i+1开始距离显著增大,则i+1K的候选都将被删去。

  为了解决6自由度的问题我们至少需要3个匹配对,文中为了提高鲁棒性使得m=3。采用了RANSAC最终得到5个最佳的变换矩阵。

8. Iterative Closest Point Fine-tuning

  最后分别采用这5个矩阵使用ICP,选取最后结果最好的那个做为LORAX的输出。

查看评论

监视程序的编制

      监视程序,这个名字听起来似乎很陌生。它的用途主要是在后台监视系统中关键信息的改变,比如注册表的改变及硬盘上由于文件操作引起的改变等等。  也许有人会问了,编制这样的程序有什么价值呢?硬盘上...
  • yemagxy
  • yemagxy
  • 2001-05-04 22:09:00
  • 571

[论文分析] Face Landmark Localization Using a Single Deep Network

解析: 论文 Face Landmark Localization Using a Single Deep Network 是本人在CCBR2016 上发表的一篇关于人脸特征点定位的文章,文章主要是...
  • sinat_34710845
  • sinat_34710845
  • 2016-12-02 22:05:56
  • 771

CVPR 2016-12-05

[1] arXiv:1612.00837 [pdf, other] Making the V in VQA Matter: Elevating the Role of Image Understa...
  • u011171235
  • u011171235
  • 2016-12-13 10:26:56
  • 2039

论文笔记 《Deep Neural Networks for Object Detection》

http://nips.cc/Conferences/2013/Program/event.php?ID=4018 注:下面的编号按照文章的编号来,所以会出现不连续的情况。 3 DNN-b...
  • baobei0112
  • baobei0112
  • 2015-08-24 18:06:24
  • 1339

论文提要“Scalable Object Detection using Deep Neural Networks”

论文提要“Scalable Object Detection using Deep Neural Networks”与之前主流检测方法DPM不同,论文提出了一种名为“DeepMultiBox”的方法产...
  • cv_family_z
  • cv_family_z
  • 2015-06-11 17:03:49
  • 2382

【论文笔记】Scalable Object Detection using Deep Neural Networks

Scalable Object Detection using Deep Neural Networks Erhan, D., Szegedy, C., Toshev, A., & Anguelov...
  • xiaozhi_chen
  • xiaozhi_chen
  • 2014-03-10 19:25:22
  • 7211

【深度学习笔记】个人阅读的Deep Learning方向的paper整理

转载来源: 人阅读的Deep Learning方向的paper整理 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还...
  • chenriwei2
  • chenriwei2
  • 2014-07-23 15:12:01
  • 5372

神经网络压缩(9) WAE-Learning a Wavelet-like Auto-Encoder to Accelerate Deep Neural Networks

转载自: http://blog.csdn.net/u011995719/article/details/78900575 WAE(Wavelet-like Auto-Encoder) 是由来自...
  • cookie_234
  • cookie_234
  • 2018-01-06 17:13:19
  • 200

DeepReID (2014 CVPR)

DeepReID: Deep Filter Pairing Neural Network for Person Re-Identification(香港中文大学Wei Li Rui Zhao Tong...
  • yuanchheneducn
  • yuanchheneducn
  • 2016-03-30 09:27:32
  • 2115
    个人资料
    等级:
    访问量: 393
    积分: 44
    排名: 182万+
    文章分类
    文章存档
    最新评论