基于随机森林分类的 Landsat 影像年度合成数据计算混淆矩阵、OA、kappa和验证精度编程实现

372 篇文章 ¥29.90 ¥99.00
本文介绍了如何使用Python的scikit-learn库,通过随机森林对Landsat影像进行年度合成数据分类,详细阐述了计算混淆矩阵、整体准确度(OA)、kappa系数以及验证精度的编程实现过程,以评估分类结果的质量和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于随机森林分类的 Landsat 影像年度合成数据计算混淆矩阵、OA、kappa和验证精度编程实现

随机森林是一种集成学习方法,在遥感图像分类中得到了广泛应用。本文将介绍如何使用随机森林对 Landsat 影像进行分类,并计算混淆矩阵、整体准确度 (Overall Accuracy, OA)、kappa 系数以及验证精度。

首先,我们需要导入所需的库和数据。在这个例子中,我们将使用 Python 的 scikit-learn 库来实现随机森林分类。

import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, cohen_kappa_score

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值