基于随机森林分类的 Landsat 影像年度合成数据计算混淆矩阵、OA、kappa和验证精度编程实现
随机森林是一种集成学习方法,在遥感图像分类中得到了广泛应用。本文将介绍如何使用随机森林对 Landsat 影像进行分类,并计算混淆矩阵、整体准确度 (Overall Accuracy, OA)、kappa 系数以及验证精度。
首先,我们需要导入所需的库和数据。在这个例子中,我们将使用 Python 的 scikit-learn 库来实现随机森林分类。
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, cohen_kappa_score