1 递归的概念和思想
递归是⼀种解决问题的方法,在C语言中,递归就是函数自己调用自己。
一个最简单的C语言递归代码:
#include <stdio.h>
int main()
{
printf("hehe\n");
main();//main函数中⼜调⽤了main函数
return 0;
}
上面的递归是为了演示递归的基本形式,不是为了解决问题,代码最终也会陷入死递归,导致栈溢出。
递归的思想:
把⼀个大型复杂问题层层转化为⼀个与原问题相似,但规模较小的子问题来求解;直到子问题不能再被拆分,递归就结束了。所以递归的思考方式就是把大事化小的过程。
2 递归的限制条件
递归在书写的时候,有2个必要条件:
• 递归存在限制条件,当满足这个限制条件的时候,递归便不再继续。
• 每次递归调用之后越来越接近这个限制条件。
3 递归举例
例1:求n的阶乘
分析和代码实现:
n的阶乘公式:
n
!
=
n
∗
(
n
−
1
)
!
n!=n*(n-1)!
n!=n∗(n−1)!
可以看出这就是把一个较大的问题,转换为一个与原问题相似,但规模较小的问题来求解,直到n等于1或0,不再拆解。
进一步分析,当n<=1时,n的阶乘是1,其余n的阶乘都可以通过上述公式计算。
这样就可以写出函数Fact求n的阶乘,假设Fact(n)是求n的阶乘,那么Fact(n-1)就是求n-1的阶乘,函数及代码如下:
#include <stdio.h>
int Fact(int n)
{
if (n <= 0)
return 1;
else
return n * Fact(n - 1);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fact(n);
printf("%d\n", ret);
return 0;
}
输出结果:
图示:
例2:输入一个整数m,按照顺序打印整数的每一位。
比如:
输⼊:1234 输出:1 2 3 4
输⼊:520 输出:5 2 0
分析和代码实现:
要打印整数的每一位,首先就是要得到这个数的每一位。
如果n是一位数,n的每一位数就是n自己。
如果n不是一位数,就得拆分每一位。
1234%10就能得到4,然后1234/10得到123,这就相当于去掉了4。
然后继续对123%10,就得到了3,再除10去掉3,以此类推。
不断的 %10 和 \10 操作,直到1234的每⼀位都得到。
但是这有个问题就是得到的数字顺序是倒着的。
假设写一个函数Print来打印n的每一位,如下所示:
Print(n)
如果n是1234,那可以表示为:
Print(1234) //打印1234的每⼀位
其中1234中的4可以通过%10得到,那么
Print(1234)就可以拆分为两步:
1. Print(1234/10) //打印123的每⼀位
2. printf(1234%10) //打印4
完成上述2步,那就完成了1234每⼀位的打印
那么Print(123)⼜可以拆分为Print(123/10) + printf(123%10)
......
以此类推,就有:
Print(1234)
==>Print(123) + printf(4)
==>Print(12) + printf(3)
==>Print(1) + printf(2)
==>printf(1)
直到被打印的数字变成一位数的时候,就不需要再拆分,递归结束。
参考代码:
#include <stdio.h>
void Print(int n)
{
if (n > 9)
{
Print(n / 10);
}
printf("%d ", n % 10);
}
int main()
{
int m = 0;
scanf("%d", &m);
Print(m);
return 0;
}
输出结果:
图示:
4 递归与迭代
递归是一种很好的编程技巧,但是在C语言中每一次函数调用,都需要为本次函数调用在栈区申请一块内存空间来保存函数调用期间各种局部变量的值,这块空间被称为运行时堆栈,或者函数栈帧。
如果函数不返回,函数对应的栈帧空间就一直被占用,所以如果函数调用中如果存在递归调用,每一次递归函数调用就都会开辟属于自己的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间。
所以如果采用函数递归的方式完成代码,递归层次太深的话,就会浪费太多的栈帧空间,可能会导致栈溢出(stack over flow)的问题。
所以如果不想使用递归就得想其他办法,通才就是迭代(即循环)的方式。
比如,采用迭代的方式实现计算n的阶乘:
int Fact(int n)
{
int i = 0;
int ret = 1;
for (i = 1; i <= n; i++)
{
ret *= i;
}
return ret;
}
采用上述代码,效率就会比递归的方式更高。
事实上,许多问题可以以递归的形式进行解释,这只是因为它比非递归的思路更加清晰,但是这些问题采用迭代实现的效率往往比递归实现的效率要高。
当一个问题非常复杂,难以使用迭代的方式实现时,此时递归实现的简洁性便可以弥补它运行时所带来的开销。
例:求第n个斐波那契数
F
(
n
)
=
F
(
n
−
1
)
+
F
(
n
−
2
)
(
n
>
=
2
,
F
(
0
)
=
1
,
F
(
1
)
=
1
)
F(n)=F(n-1)+F(n-2)(n>=2,F(0)=1,F(1)=1)
F(n)=F(n−1)+F(n−2)(n>=2,F(0)=1,F(1)=1)
通过以上公式,很容易诱导我们将代码写成递归的形式,如下所示:
include <stdio.h>
int Fib(int n)
{
if (n <= 2)
return 1;
else
return Fib(n - 1) + Fib(n - 2);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d\n", ret);
return 0;
}
输出结果:
可以看到,当输入50时,需要很长时间才能算出结果,这也说明递归的写法是非常低效的,可以发现,在展开的过程中,递归的过程中会有重复计算,而且递归层次越深,冗余计算越多。
测试代码:
#include <stdio.h>
int count = 0;
int Fib(int n)
{
if (n == 3)
count++;//统计第3个斐波那契数被计算的次数
if (n <= 2)
return 1;
else
return Fib(n - 1) + Fib(n - 2);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d\n", ret);
printf("\ncount = %d\n", count);
return 0;
}
输出结果:
这里可以看到,在计算第40个斐波那契时,使用递归方式,光是第3个斐波那契数就被重复计算了39088169次,这些计算是非常冗余的。
因为斐波那契数的前2个数都为1,而前2个数相加就是第3个数,那么从前往后,从小到大计算,采用迭代的方式就可以得到第n个斐波那契数。
参考代码:
#include <stdio.h>
int Fib(int n)
{
int a = 1;
int b = 1;
int c = 1;
while (n > 2)
{
c = a + b;
a = b;
b = c;
n--;
}
return c;
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d\n", ret);
return 0;
}
输出结果:
用迭代的方式去实现,效率就高很多。