it项目管理第二次作业

it项目管理第二次作业

问题

  1. 使用业务、组织、技术三维模型系统管理方法分析某校园项目
    (可自定义)的可行性;
  2. 有人说企业信息化是“一把手工程”。通过网络搜索IT项目缺乏高级管理层支持失败案例,运用思维导图或系统模型描述高级管理层支持的重要性;
  3. 选CMMI、ASPICE、ITIL、COBIT5或其他任一IT行业标准,围绕1-2张结构或原理图,解释它运用系统化思维决解行业问题方法;

首先是三维模型的内容:
在这里插入图片描述
以中山大学的官方移动端app为例,展示三维模型:

业务
  1. 成本与收益
    • 成本 :为app提供后端服务的服务器成本,以及负责软件维护运营的it工作人员的成本
    • 收益:为广大中山大学学生提供了课程表,成绩查询,校园资讯查询等功能,为学生提供了极大的便利
  2. 影响成本与收益的要素
    这一部分都是由使用人数来决定的,为越多的学生提供服务,学校获得的收益越多,同时,对于服务器以及技术人员的要求也越高,成本也越高
  3. 软件开发的决策
    为了为学生提供一系列的服务而决定开发的软件。
组织

1.组织结构
分为不同团队各自负责不同的任务,由一位指导老师作为总负责人,各个团队分别负责不同的任务。
2. 业务角色与职责
指导老师负责统筹整个项目的发展,团队分为产品与技术两个团队,产品团队负责需求的分析以及原型设计,技术团队中分为两个小团队,前端团队负责app相关界面的实现,后端团队进行服务端的编写。
3. 组织目标与规划
组织的目标是完成中山大学移动端app开发,为广大师生提供便利。

技术
  1. 软件基础设施
    可以通过访问网页端获取相关的信息。
  2. 硬件与网络设施
    可以采用中山大学网页端教务网站的相关服务器。
  3. 遗留系统与数据迁移

在业务上,中山大学移动端app具有良好的收益,能够提供极大的便利,在组织上,对于不同部分的任务,采用不同的团队专门负责,并有指导老师统筹,在技术上有现行可用的资源,因此该项目具有可行性。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 支持向量机非线性回归通用MATLAB程序解析 #### 一、概述 本文将详细介绍一个基于MATLAB的支持向量机(SVM)非线性回归的通用程序。该程序采用支持向量机方法来实现数据的非线性回归,并通过不同的核函数设置来适应不同类型的数据分布。此外,该程序还提供了数据预处理的方法,使得用户能够更加方便地应用此程序解决实际问题。 #### 二、核心功能与原理 ##### 1. 支持向量机(SVM) 支持向量机是一种监督学习模型,主要用于分类和回归分析。对于非线性回归任务,SVM通过引入核技巧(kernel trick)将原始低维空间的非线性问题转换为高维空间的线性问题,从而实现有效的非线性建模。 ##### 2. 核函数 核函数的选择直接影响到模型的性能。本程序内置了三种常用的核函数: - **线性核函数**:`K(x, y) = x'y` - **多项式核函数**:`K(x, y) = (x'y + 1)^d` - **径向基函数(RBF)**:`K(x, y) = exp(-γ|x - y|^2)` 其RBF核函数被广泛应用于非线性问题,因为它可以处理非常复杂的非线性关系。本程序默认使用的是RBF核函数,参数`D`用于控制高斯核函数的宽度。 ##### 3. 数据预处理 虽然程序本身没有直接涉及数据预处理的过程,但在实际应用,对数据进行适当的预处理是非常重要的。常见的预处理步骤包括归一化、缺失值处理等。 ##### 4. 模型参数 - **Epsilon**: ε-insensitive loss function的ε值,控制回归带宽。 - **C**: 松弛变量的惩罚系数,控制模型复杂度与过拟合的风险之间的平衡。 #### 三、程序实现细节 ##### 1. 函数输入与输出 - **输入**: - `X`: 输入特征矩阵,维度为(n, l),其n是特征数量,l是样本数量。 - `Y`: 目标值向量,长度为l。 - `Epsilon`: 回归带宽。 - `C`: 松弛变量的惩罚系数。 - `D`: RBF核函数的参数。 - **输出**: - `Alpha1`: 正的拉格朗日乘子向量。 - `Alpha2`: 负的拉格朗日乘子向量。 - `Alpha`: 拉格朗日乘子向量。 - `Flag`: 标记向量,表示每个样本的类型。 - `B`: 偏置项。 ##### 2. 核心代码解析 程序首先计算所有样本间的核矩阵`K`,然后构建二次规划问题并求解得到拉格朗日乘子向量。根据拉格朗日乘子的值确定支持向量,并计算偏置项`B`。 - **核矩阵计算**:采用RBF核函数,通过`exp(-(sum((xi-xj).^2)/D))`计算任意两个样本之间的相似度。 - **二次规划**:构建目标函数和约束条件,使用`quadprog`函数求解最小化问题。 - **支持向量识别**:根据拉格朗日乘子的大小判断每个样本是否为支持向量,并据此计算偏置项`B`。 #### 四、程序扩展与优化 - **多核函数支持**:可以通过增加更多的核函数选项,提高程序的灵活性。 - **自动调参**:实现参数自动选择的功能,例如通过交叉验证选择最优的`Epsilon`和`C`值。 - **并行计算**:利用MATLAB的并行计算工具箱加速计算过程,特别是当样本量很大时。 #### 五、应用场景 该程序适用于需要进行非线性回归预测的场景,如经济预测、天气预报等领域。通过调整核函数和参数,可以有效应对各种类型的非线性问题。 ### 总结 本程序提供了一个支持向量机非线性回归的完整实现框架,通过灵活的核函数设置和参数调整,能够有效地处理非线性问题。对于需要进行回归预测的应用场景,这是一个非常实用且强大的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值