常见概率分布

常见离散概率分布

分布参数范围概率质量函数期望方差
两点/伯努利分布 X ∼ B e r n o u l l i ( p ) X\sim Bernoulli(p) XBernoulli(p) 0 < p < 1 0<p<1 0<p<1 P ( X = k ) = p k ( 1 − p ) 1 − k k = 0 , 1 P(X=k)=p^k(1-p)^{1-k}\\k=0,1 P(X=k)=pk(1p)1kk=0,1 p p p p ( 1 − p ) p(1-p) p(1p)
二项分布 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p) 0 < p < 1 n ≥ 1 整 数 0<p<1\\n\geq1整数 0<p<1n1 P ( X = k ) = C n k p k ( 1 − p ) n − k k = 0 , 1 , . . . , n P(X=k)=C_n^kp^k(1-p)^{n-k}\\k=0,1,...,n P(X=k)=Cnkpk(1p)nkk=0,1,...,n n p np np n p ( 1 − p ) np(1-p) np(1p)
泊松分布 X ∼ P ( λ ) X\sim P(\lambda) XP(λ) λ > 0 \lambda>0 λ>0 P ( X = k ) = λ k k ! e − λ k = 0 , 1 , . . . P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}\\k=0,1,... P(X=k)=k!λkeλk=0,1,... λ \lambda λ λ \lambda λ
几何分布 X ∼ G ( p ) X\sim G(p) XG(p) 0 < p < 1 0<p<1 0<p<1 P ( X = k ) = ( 1 − p ) k − 1 p k = 1 , 2 , . . . P(X=k)=(1-p)^{k-1}p\\k=1,2,... P(X=k)=(1p)k1pk=1,2,... 1 p \frac{1}{p} p1 1 − p p 2 \frac{1-p}{p^2} p21p
超几何分布 X ∼ H ( N , M , n ) X\sim H(N,M,n) XH(N,M,n) M ≤ N , n ≤ N M\leq N,n\leq N MN,nN整数 P ( X = k ) = C M k C N − M n − k C N n k = 0 , 1 , . . . , min ⁡ ( M , N ) P(X=k)=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n}\\k=0,1,...,\min(M,N) P(X=k)=CNnCMkCNMnkk=0,1,...,min(M,N) n M N \frac{nM}{N} NnM n M N ( 1 − M N ) N − n N − 1 \frac{nM}{N}(1-\frac{M}{N})\frac{N-n}{N-1} NnM(1NM)N1Nn
帕斯卡分布 X ∼ B 0 ( r , p ) X\sim B_0(r,p) XB0(r,p) 0 < p < 1 r ≥ 1 整 数 0<p<1\\r\geq1整数 0<p<1r1 P ( X = k ) = C k − 1 r − 1 p r ( 1 − p ) k − r k = r , r + 1 , . . . P(X=k)=C_{k-1}^{r-1}p^r(1-p)^{k-r}\\k=r,r+1,... P(X=k)=Ck1r1pr(1p)krk=r,r+1,... r p \frac{r}{p} pr r ( 1 − p ) p 2 \frac{r(1-p)}{p^2} p2r(1p)

常见连续概率分布

分布参数范围密度函数期望方差
柯西分布 λ > 0 , μ 常 数 \lambda>0,\mu常数 λ>0,μ p ( x ) = 1 π λ λ 2 + ( x − μ ) 2 − ∞ < x < + ∞ p(x)=\frac{1}{\pi}\frac{\lambda}{\lambda^2+(x-\mu)^2}\\-\infty<x<+\infty p(x)=π1λ2+(xμ)2λ<x<+不存在不存在
均匀分布 X ∼ U [ a , b ] X\sim U[a,b] XU[a,b] a < b a<b a<b常数 p ( x ) = { 1 b − a , a ≤ x ≤ b 0 , o t h e r w i s e p(x)=\begin{cases}\frac{1}{b-a},a\leq x\leq b\\0,\quad otherwise\end{cases} p(x)={ba1,axb0,otherwise a + b 2 \frac{a+b}{2} 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2
指数分布 X ∼ E ( λ ) X\sim E(\lambda) XE(λ) λ > 0 \lambda>0 λ>0常数 p ( x ) = { λ e − λ x , x ≥ 0 0 , x < 0 p(x)=\begin{cases}\lambda e^{-\lambda x},x\geq0\\0,\qquad x<0\end{cases} p(x)={λeλx,x00,x<0 1 λ \frac{1}{\lambda} λ1 1 λ 2 \frac{1}{\lambda^2} λ21
正态分布 X ∼ N ( μ , σ ) X\sim N(\mu,\sigma) XN(μ,σ) − ∞ < μ < + ∞ σ > 0 -\infty<\mu<+\infty\\\sigma>0 <μ<+σ>0常数 p ( x ) = 1 2 π σ e x p { − ( x − μ ) 2 2 σ 2 } − ∞ < x < + ∞ p(x)=\frac{1}{\sqrt{2\pi}\sigma}exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}\\-\infty<x<+\infty p(x)=2π σ1exp{2σ2(xμ)2}<x<+ μ \mu μ σ 2 \sigma^2 σ2
χ 2 \chi^2 χ2分布 X ∼ χ 2 ( n ) X\sim \chi^2(n) Xχ2(n) n n n正整数 p ( x ) = { 1 2 n / 2 Γ ( n 2 ) x n 2 − 1 e − x / 2 , x ≥ 0 0 , x < 0 p(x)=\begin{cases}\frac{1}{2^{n/2}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-x/2},x\geq0\\0,\qquad\qquad\qquad\qquad\qquad x<0\end{cases} p(x)={2n/2Γ(2n)1x2n1ex/2,x00,x<0 n n n 2 n 2n 2n
Γ \Gamma Γ分布 X ∼ Γ ( λ , r ) X\sim\Gamma(\lambda,r) XΓ(λ,r) r > 0 , λ > 0 r>0,\lambda>0 r>0,λ>0常数 p ( x ) = { λ r Γ ( r ) x r − 1 e − λ x , x ≥ 0 0 , x < 0 p(x)=\begin{cases}\frac{\lambda^r}{\Gamma(r)} x^{r-1}e^{-\lambda x},x\geq0\\0,\qquad\qquad\qquad x<0\end{cases} p(x)={Γ(r)λrxr1eλx,x00,x<0 r λ \frac{r}{\lambda} λr r λ 2 \frac{r}{\lambda^2} λ2r
t t t分布 t ( n ) t(n) t(n) n n n正整数 p ( x ) = Γ ( n + 1 2 ) n π Γ ( n 2 ) ( 1 + x 2 n ) − ( n + 1 ) / 2 − ∞ < x < + ∞ p(x)=\frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})}(1+\frac{x^2}{n})^{-(n+1)/2}\\-\infty<x<+\infty p(x)=nπ Γ(2n)Γ(2n+1)(1+nx2)(n+1)/2<x<+ 0 ( n > 1 ) 0(n>1) 0(n>1) n n − 2 ( n > 2 ) \frac{n}{n-2}(n>2) n2n(n>2)
β \beta β分布 X ∼ β ( p , q ) X\sim \beta(p,q) Xβ(p,q) p > 0 , q > 0 p>0,q>0 p>0,q>0常数 p ( x ) = { Γ ( p + q ) Γ ( p ) Γ ( q ) x p − 1 ( 1 − x ) q − 1 , 0 < x < 1 0 , x ≤ 0 x ≥ 1 p(x)=\begin{cases}\frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)}x^{p-1}(1-x)^{q-1},0<x<1\\0,\qquad\qquad\qquad x\leq0 x\geq1\end{cases} p(x)={Γ(p)Γ(q)Γ(p+q)xp1(1x)q1,0<x<10,x0x1 p p + q \frac{p}{p+q} p+qp p q ( p + q ) 2 ( p + q + 1 ) \frac{pq}{(p+q)^2(p+q+1)} (p+q)2(p+q+1)pq
F F F分布 k 1 , k 2 k_1,k_2 k1,k2正整数 p ( x ) = { Γ ( k 1 + k 2 2 ) Γ ( k 1 2 ) Γ ( k 2 2 ) k 1 k 1 / 2 k 2 k 2 / 2 x k 1 / 2 − 1 ( k 2 + k 1 x ) ( k 1 + k 2 ) / 2 , x ≥ 0 0 , x < 0 p(x)=\begin{cases}\frac{\Gamma(\frac{k_1+k_2}{2})}{\Gamma(\frac{k_1}{2})\Gamma(\frac{k_2}{2})}k_1^{k_1/2}k_2^{k_2/2}\frac{x^{k_1/2-1}}{(k_2+k_1x)^{(k_1+k_2)/2}},x\geq0\\0,\qquad\qquad\qquad x<0\end{cases} p(x)=Γ(2k1)Γ(2k2)Γ(2k1+k2)k1k1/2k2k2/2(k2+k1x)(k1+k2)/2xk1/21,x00,x<0 k 2 k 2 − 1 ( k 2 > 2 ) \frac{k_2}{k_2-1}\\(k_2>2) k21k2(k2>2) 2 k 2 2 ( k 1 + k 2 − 2 ) k 1 ( k 2 − 2 ) 2 ( k 2 − 4 ) ( k 2 > 4 ) \frac{2k_2^2(k_1+k_2-2)}{k_1(k_2-2)^2(k_2-4)}\\(k_2>4) k1(k22)2(k24)2k22(k1+k22)(k2>4)

分布之间关系

在这里插入图片描述


常见概率统计分布及Python实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值