弱大数定律与强大数定律、中心极限定理

弱大数定律

  随机变量序列 ξ 1 , . . . , ξ n , . . . \xi_1,...,\xi_n,... ξ1,...,ξn,...,令 η n = 1 n ∑ i = 1 n ξ i \eta_n=\frac{1}{n}\sum_{i=1}^n\xi_i ηn=n1i=1nξi,如果存在常数序列 a 1 , . . . , a n , . . . a_1,...,a_n,... a1,...,an,...,对任意的 ϵ > 0 \epsilon>0 ϵ>0,恒有
lim ⁡ n → ∞ P ( ∣ η n − a n ∣ < ϵ ) = 1 \lim_{n\rightarrow\infty}P(|\eta_n-a_n|<\epsilon)=1 nlimP(ηnan<ϵ)=1
则称序列 { ξ n } \{\xi_n\} {ξn}服从大数定律。

1. 切比雪夫大数定律

  随机变量序列 ξ 1 , . . . , ξ n , . . . \xi_1,...,\xi_n,... ξ1,...,ξn,...两两不想关,每一随机变量均有有限的方差,且有公共上界
D ξ 1 ≤ C , D ξ 2 ≤ C , . . . , D ξ n ≤ C , . . . . D\xi_1\leq C,D\xi_2\leq C,...,D\xi_n\leq C,.... Dξ1C,Dξ2C,...,DξnC,....
则对任意 ϵ > 0 \epsilon>0 ϵ>0,有
lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n ξ i − 1 n ∑ i = 1 n E ξ i ∣ < ϵ ) = 1 \lim_{n\rightarrow\infty}P(|\frac{1}{n}\sum_{i=1}^n\xi_i-\frac{1}{n}\sum_{i=1}^nE\xi_i|<\epsilon)=1 nlimP(n1i=1nξin1i=1nEξi<ϵ)=1
η n = 1 n ∑ i = 1 n ξ i → P E η n \eta_n=\frac{1}{n}\sum_{i=1}^n\xi_i\xrightarrow{P}E\eta_n ηn=n1i=1nξiP Eηn

2. 马尔可夫大数定律

  随机变量序列 ξ 1 , . . . , ξ n , . . . \xi_1,...,\xi_n,... ξ1,...,ξn,...若满足
1 n 2 D ( ∑ k = 1 n ξ k ) → 0 \frac{1}{n^2}D(\sum_{k=1}^n\xi_k)\rightarrow0 n21D(k=1nξk)0
则对任意 ϵ > 0 \epsilon>0 ϵ>0,有
lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n ξ i − 1 n ∑ i = 1 n E ξ i ∣ < ϵ ) = 1 \lim_{n\rightarrow\infty}P(|\frac{1}{n}\sum_{i=1}^n\xi_i-\frac{1}{n}\sum_{i=1}^nE\xi_i|<\epsilon)=1 nlimP(n1i=1nξin1i=1nEξi<ϵ)=1
η n = 1 n ∑ i = 1 n ξ i → P E η n \eta_n=\frac{1}{n}\sum_{i=1}^n\xi_i\xrightarrow{P}E\eta_n ηn=n1i=1nξiP Eηn

3. 伯努利大数定律

  设 μ n \mu_n μn n n n次伯努利试验中事件A出现的次数,而 p p p是事件A在每次试验中出现的概率,则对任意 ϵ > 0 \epsilon>0 ϵ>0,都有
lim ⁡ n → ∞ P ( ∣ μ n n − p ∣ < ϵ ) = 1 \lim_{n\rightarrow\infty}P(|\frac{\mu_n}{n}-p|<\epsilon)=1 nlimP(nμnp<ϵ)=1

4. 泊松大数定律

  如果在一个独立试验序列中,事件A在第k次试验中出现的概率等于 p k p_k pk,记 μ n \mu_n μn n n n次试验中事件A出现的次数,则对任意 ϵ > 0 \epsilon>0 ϵ>0,都有
lim ⁡ n → ∞ P ( ∣ μ n n − p 1 + . . . + p n n ∣ < ϵ ) = 1 \lim_{n\rightarrow\infty}P(|\frac{\mu_n}{n}-\frac{p_1+...+p_n}{n}|<\epsilon)=1 nlimP(nμnnp1+...+pn<ϵ)=1

5. 辛钦大数定律

  随机变量序列 ξ 1 , . . . , ξ n , . . . \xi_1,...,\xi_n,... ξ1,...,ξn,...相互独立,服从相同的分布,且具有有限的期望 μ = E ξ n \mu=E\xi_n μ=Eξn,则对任意 ϵ > 0 \epsilon>0 ϵ>0,有
lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n ξ i − μ ∣ < ϵ ) = 1 \lim_{n\rightarrow\infty}P(|\frac{1}{n}\sum_{i=1}^n\xi_i-\mu|<\epsilon)=1 nlimP(n1i=1nξiμ<ϵ)=1
η n = 1 n ∑ i = 1 n ξ i → P μ \eta_n=\frac{1}{n}\sum_{i=1}^n\xi_i\xrightarrow{P}\mu ηn=n1i=1nξiP μ

强大数定律

  独立随机变量序列 ξ 1 , . . . , ξ n , . . . \xi_1,...,\xi_n,... ξ1,...,ξn,...若满足 η n = 1 n ∑ i = 1 n ξ i → a . s . E η n \eta_n=\frac{1}{n}\sum_{i=1}^n\xi_i\xrightarrow{a.s.}E\eta_n ηn=n1i=1nξia.s. Eηn,即
P ( lim ⁡ n → ∞ 1 n ∑ i = 1 n ( ξ i − E ξ i ) = 0 ) = 1 P(\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{i=1}^n(\xi_i-E\xi_i)=0)=1 P(nlimn1i=1n(ξiEξi)=0)=1
则称它满足强大数定律。

1. 博雷尔强大数定律

  设 μ n \mu_n μn n n n次独立试验中事件A出现的次数,而在每次试验中事件A出现的概率是 p p p,则
P ( lim ⁡ n → ∞ μ n n = p ) = 1 P(\lim_{n\rightarrow\infty}\frac{\mu_n}{n}=p)=1 P(nlimnμn=p)=1

2. 柯尔莫哥洛夫强大数定律

  独立随机变量序列 ξ 1 , . . . , ξ n , . . . \xi_1,...,\xi_n,... ξ1,...,ξn,...,若满足
∑ i = 1 n D ξ i n 2 < ∞ \sum_{i=1}^n\frac{D\xi_i}{n^2}<\infty i=1nn2Dξi<

P ( lim ⁡ n → ∞ 1 n ∑ i = 1 n ( ξ i − E ξ i ) = 0 ) = 1 P(\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{i=1}^n(\xi_i-E\xi_i)=0)=1 P(nlimn1i=1n(ξiEξi)=0)=1

  随机变量序列 ξ 1 , . . . , ξ n , . . . \xi_1,...,\xi_n,... ξ1,...,ξn,...相互独立同分布,则
1 n ( ξ 1 + . . . + ξ n ) → a . s . a \frac{1}{n}(\xi_1+...+\xi_n)\xrightarrow{a.s.}a n1(ξ1+...+ξn)a.s. a
成立的充要条件是 E ξ i E\xi_i Eξi存在且等于 a a a

中心极限定理

  独立随机变量序列 ξ 1 , . . . , ξ n , . . . \xi_1,...,\xi_n,... ξ1,...,ξn,...,假定 E ξ i E\xi_i Eξi D ξ i D\xi_i Dξi存在,令
ζ n = ∑ i = 1 n ξ i − ∑ i = 1 n E ξ i ∑ i = 1 n D ξ i \zeta_n=\frac{\sum_{i=1}^n\xi_i-\sum_{i=1}^nE\xi_i}{\sqrt{\sum_{i=1}^nD\xi_i}} ζn=i=1nDξi i=1nξii=1nEξi
ζ n ∼ N ( 0 , 1 ) \zeta_n\sim \mathcal{N}(0,1) ζnN(0,1),即
lim ⁡ n → ∞ P ( ζ n < x ) = 1 2 π ∫ − ∞ x e − t 2 / 2 d t \lim_{n\rightarrow\infty}P(\zeta_n<x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^xe^{-t^2/2}dt nlimP(ζn<x)=2π 1xet2/2dt
则称序列 { ξ n } \{\xi_n\} {ξn}服从中心极限定理。

林德贝格-勒维中心极限定理

  独立同分布随机变量序列 ξ 1 , . . . , ξ n , . . . \xi_1,...,\xi_n,... ξ1,...,ξn,...,假定 E ξ i = μ E\xi_i=\mu Eξi=μ D ξ i = σ 2 D\xi_i=\sigma^2 Dξi=σ2存在,且 0 < σ 2 < ∞ 0<\sigma^2<\infty 0<σ2<,令
ζ n = ∑ i = 1 n ξ i − ∑ i = 1 n E ξ i ∑ i = 1 n D ξ i \zeta_n=\frac{\sum_{i=1}^n\xi_i-\sum_{i=1}^nE\xi_i}{\sqrt{\sum_{i=1}^nD\xi_i}} ζn=i=1nDξi i=1nξii=1nEξi
ζ n ∼ N ( 0 , 1 ) \zeta_n\sim \mathcal{N}(0,1) ζnN(0,1)

摘自:
概率论基础——李贤平

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值