20届智能车急速光电龙芯组框架开源——包含定制内核、定制跟文件系统、配套开发程序

目录

概要

项目特色

开源介绍

视频演示

更新须知


概要

        本项目用于20届智能车急速光电组龙芯赛道,赛题限用龙芯久久派2K0300,使用Linux操作系统。为智能车专属定制,包含硬件驱动(闭环电机,刷电机pwm控制,陀螺仪,ST7735屏幕驱动,舵机pwm驱动等..)

开源地址:20届智能车急速光电开源仓库: 本项目用于20届智能车急速光电组龙芯赛道,赛题限用龙芯久久派2K0300,仓库内容包含 1.官方提供的新世界内核(已经为智能车使用做过裁剪和修改)2.定制buildroot跟文件系统(已经包含板载aic8800wifi驱动,opencv4,jsoncpp动态库,裁剪后的linux内核文件(在/boot 下))3.构建好的cmake c++环境,包含了硬件驱动库,可以直接调用控制硬件驱动https://gitee.com/Wuwu129/SmartCar_99Pai_OpenSource

项目特色

  1. 剔除冗余功能,极大提高启动速度(测试26s进入系统,为赛场上节省时间)

  2. 官方新世界内核并未保留wifi驱动,项目内核成功移植aic8800驱动,并测试可用

  3. 启动设置以太网静态ip:192.168.1.79 接网线可以直接连接

  4. 硬件驱动与用户空间隔离,做到用户空间代码崩溃后硬件控制自动关闭保证人员安全

  5. 文件系统已经移植好opencv和jsoncpp可供用户直接使用不需要自行编译

  6. 配套程序框架已经配置好cmake环境,并编写好操作指南,可直接调用opencv和jsoncpp

开源介绍

        开源项目中包含官方提供的uboot用户手册,内容包含烧写uboot,替换内核文件,替换根文件系统。(本项目不做额外教学)

        内核驱动均开源,可通过设备树查看对应驱动内容,已经添加电机增量式闭环驱动,用户空间可以直接向内核写入电机闭环的pid的i项和k项,但不提供向外输出的接口,如需要通过vofa等串口助手调参可能需要自行修改内核为其添加输出。

        如有需要可以在设备树中自行修改
位置位于:linux-6.9-WuwuSama-99pi/arch/loongarch/boot/dts/loongson_2k0300_99_pai_wifi.dts

设备树

驱动文件均以wuwu_开头存放在linux-6.9-WuwuSama-99pi/drivers/misc/下以wuwu_命名

部分驱动文件

视频演示

 

智能车龙芯开源框架-开机测速

智能车龙芯开源框架-程序关闭保护

更新须知

        项目中可能存在部分漏洞,可以联系我向我提交内容。

        如在使用过程中出现问题我会同步更新到仓库,目前暂无明显问题,已经稳定使用3个月(2025年3月~2025年6月)。

        ·

内容概要:本文介绍了悬臂梁的有限元分析方法,重点采用多重网格高斯-赛德尔迭代法求解有限元方程,并提供了完整的Matlab代码实现。文章系统阐述了有限元法的基本原理,包括单元划分、刚度矩阵装、边界条件处理及数值求解流程,结合多重网格技术提升求解效率,有效解决了传统迭代方法在大规模问题中收敛慢的问题。通过具体算例验证了该方法的准确性与高效性,展示了从建模到结果可视化的完整过程。; 适合人群:具备有限元基础理论知识和Matlab编程能力的力学、土木、机械等工程领域研究生或科研人员;适用于从事结构分析、数值计算方法研究的相关技术人员。; 使用场景及目标:①掌握有限元法在悬臂梁问题中的建模与实现过程;②理解并应用多重网格法加速高斯-赛德尔迭代的数值求解技术;③通过Matlab代码实践提升对数值算法与悬臂梁的有限元分析,采用多重网格高斯-赛德尔方法求解(Matlab代码实现)工程仿真结合的能力;④为复杂结构的高效数值模拟提供方法参考和技术支持。; 阅读建议:建议读者结合有限元教材同步学习,重点关注刚度矩阵的形成与边界条件施加细节,动手运行并调试提供的Matlab代码,尝试改变网格密度或材料参数以观察对结果的影响,深入理解多重网格算法在提升计算效率方面的作用。
【源码免费下载链接】:https://renmaiwang.cn/s/eb8qv DLNA(Digital Living Network Alliance,数字生活网络联盟)是一种标准化技术体系,旨在实现多种电子设备间的无缝媒体内容共享,涵盖音乐、视频与图片等多种形式。该技术体系特别适用于家庭网络环境,在此场景下,各类型终端设备如智能手机、电视机、电脑等可通过统一网络连接,并支持相互播放或分享多媒体文件。Dlna音乐播放器作为一个应用程序,通过DLNA规范实现对支持DMR(Digital Media Renderer,数字媒体渲染器)设备的搜索与连接功能。作为DLNA架构中的核心件之一,DMR负责接收和处理来自其他设备的多媒体内容,并提供流媒体播放服务。例如,在支持DMR的智能音响系统中,用户可通过Dlna音乐播放器实现音乐文件的实时流式传输。在DLNA框架体系内,另一个关键角色是数字媒体控制器(DMC,Digital Media Controller)。作为该体系中的具体实施者之一,Dlna音乐播放器具备以下功能:首先可搜索并连接至支持DMR设备;其次提供播放与暂停操作;同时支持音量调节功能;此外能实时更新播放进度条,并通过监听设备状态变化实现事件响应。在"MusicDlnaDemo"文件中,很可能包含了一个演示性代码示例,用于展示开发基本Dlna音乐播放器的技术要点。该示例可能涵盖了设备发现、媒体控制及交互操作等功能模块,对于理解和构建自定义DLNA多媒体应用具有重要参考价值。开发此类应用需要对UPnP(Unified Platform for Plug-and-Play, 通用即插即用)协议有基本掌握能力,并具备处理网络通信、数据解析以及多线程编程的经验,以确保程序的响应性和稳定性。Dlna音乐播放器作为一个强大的工具,通过其技术体系的应用,使得多媒体内容共享更加便
内容概要:本文介绍了基于自适应傅里叶分解(AFD)的多通道信号分析方法,并提供了完整的Matlab代码实现。AFD是一种先进的信号处理技术,能够有效处理非平稳、非线性信号,特别适用于多通道信号的高精度频域分析。文中详细阐述了AFD的基本原理、算法流程及其在实际工程中的应用价值,尤其强调其在机械故障诊断(如轴承故障检测)等领域的实用性。此外,文档还附带了多个相关案例,涵盖倒谱预白化、平方包络谱分析等技术,展示了信号处理与故障诊断相结合的具体实现路径。配套资源包括可运行的Matlab代码和网盘资料链接,便于读者复现与拓展研究。; 适合人群:具备一定信号处理基础和Matlab编程能力的研究生、科研人员及从事机械故障诊断、【自适应傅里叶分解AFD】多通道信号分析的自适应傅里叶分解(Matlab代码实现)电力电子、自动化等相关领域的工程技术人员。; 使用场景及目标:①用于复杂工况下多通道信号的频域分解与特征提取;②应用于旋转机械(如轴承)在变速条件下的故障诊断;③作为科研教学工具,帮助理解AFD算法机制并开展创新性研究; 阅读建议:建议结合提供的Matlab代码逐模块调试运行,配合理论部分深入理解算法细节,同时可参考文档中列举的其他信号处理与优化算法案例进行横向对比与综合应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值