【芯片原理】NPU矩阵乘法加速详解

概述

深度学习模型中费时的算子是往往是卷积操作,而卷积的本质是矩阵的乘加计算,所以通过硬件加速矩阵的乘加运算就能达到加速深度学习训练与推理的目标;本文旨在形象化的解释Google TPU与Nvidia TensorCore对矩阵乘加的加速过程

 

Nvidia TensorCore

NV TensorCore 加速矩阵乘加运算示意图

Nvidia官方给出的TensorCore 加速矩阵乘加运算示意图如上,虽然很直观但却不容易理解图中灰色3维的立方体计算单元是如何完成矩阵乘加运算的,本文试图解释如下

4x4矩阵乘法与3维计算单元

如上图所示由于矩阵乘法计算天然存在3维计算的特性(3个for循环),所以设计一个3维的硬件计算单元就可以并行计算所有矩阵元素的乘法再做累加;上图展示了一个4x4x4的三维计算单元如何加速4x4矩阵乘加的过程

8x8矩阵乘法转换为4x4矩阵乘加

那么当矩阵大小超过4x4的时候,上图展示了如何将8x8的矩阵分解为多个4x4的矩阵乘加,从而可以继续利用4x4x4三维计算单元进行乘加硬件加速,所以这也解释了为什么NV要求用户的模型中矩阵的大小最好是4的倍数

 

Google TPU

Google TPU MAC阵列加速矩阵乘法

Google TPU中通过MAC模块进行矩阵乘法的加速,官方给出的加速矩阵乘法运算示意图如上,本文试图解释如下

MAC计算矩阵乘法的示意图

如上图所示,两个矩阵的元素按照特定的排列方式逐步流入灰色的MAC计算阵列,每一步就可以在MAC计算单元中得到一个中间结果,当两个矩阵的元素全部流过MAC计算阵列后,MAC计算单元中就是完整的矩阵乘法结果

 

脉动阵列

以上的矩阵乘加硬件加速在芯片设计上的原理都离不开脉动阵列理论:Systolic Array源于1982年H. T. Kung发表的论文(Why Systolic Architectures?),这篇论文阐述了并行处理芯片采用脉动阵列的三条理由。今天所有的*PU设计都源自这一理念,TPU MAC、NV TensorCore 、含光800 Tensor Array 等……

### 硬件加速矩阵运算的实现方法 #### FPGA上的矩阵运算实现 Field-Programmable Gate Array (FPGA) 提供了一种灵活的方式来实现高效的矩阵运算。由于其高度可配置性和并行处理能力,FPGA 成为了许多应用的理想选择,特别是在高性能计算和深度学习领域[^2]。 对于矩阵乘法操作,在FPGA 上的设计通常会考虑以下几个方面: - **流水线结构**:通过构建多级流水线来提高吞吐量。每一级可以执行不同的子任务,比如读取输入数据、完成部分乘积累加(PE, Processing Element),以及写回结果。 - **资源复用**:合理安排逻辑单元和其他硬件资源以减少面积开销的同时保持性能。这可能涉及到共享某些组件或者优化内存访问模式。 - **分布式存储器架构**:采用片上BRAMs(Block RAM)或其他形式的小型高速缓存来降低延迟并增加带宽。这些本地化的存储可以帮助减轻外部DRAM的压力,并支持更高的并发度。 ```verilog module matrix_mult #(parameter WIDTH=8)( input wire clk, output reg [WIDTH*WIDTH-1:0] result); // Verilog code for a simple matrix multiplication on an FPGA endmodule ``` #### NPU 中的矩阵乘法加速机制 Neural Processing Units (NPUs) 或者其他类型的AI专用处理器也采用了特定策略来进行快速而有效的矩阵运算。这类设备往往具备大规模SIMD/SIMT指令集的支持,允许单条命令控制多个算术逻辑单元(ALU) 同步工作。此外,它们还配备了专门用于张量操作的数据通路和寄存器文件,从而进一步提升了效率[^1]。 具体来说,NPU 的设计可能会包含以下特性: - **高密度ALU集群**:集中布置大量同质或异构的浮点数/整数运算核心,形成密集阵列,以便于同时处理大批量元素间的相互作用。 - **层次化缓存体系**:建立由L1/L2组成的分级式临时储存区,靠近计算节点的位置放置最常使用的参数表项;远离位置则负责长期保存较大规模但不频繁变动的信息集合。 - **直接映射互连网络**:创建低延时且无阻塞的消息传递路径,确保不同分区之间能够迅速交换中间产物而不受干扰。 #### 支持矩阵计算的主要硬件及其设计原则 随着对更高性能需求的增长和技术进步的影响,出现了多种专为解决复杂数值问题而生的新一代硬件平台。除了上述提到过的FPGAs 和 NPUs 外,还有GPU(Graphics Processing Unit), ASIC(Application Specific Integrated Circuit)等形式各异的产品参与竞争市场。每一种都有各自独特之处,共同推动着整个行业向前发展[^4]。 总体而言,当构思一款新型号产品时应遵循这样一些通用准则: - **功耗与散热管理**:考虑到实际应用场景下的环境条件限制因素,必须精心规划电源供给方案及热传导措施,防止过载损坏元件甚至引发火灾事故风险。 - **成本效益分析**:平衡研发投入产出比例关系,既要追求技术创新也要兼顾商业可行性考量,力求达到最佳性价比状态。 - **兼容性与扩展性保障**:预留接口便于后续升级维护作业开展,同时也方便与其他第三方工具链集成协作使用。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值