获取 onnx 模型的输入输出信息 Python 脚本

这段脚本展示了如何使用onnxruntime库获取ONNX模型的输入和输出信息。当模型输入shape固定时,例如[1,3,224,224],输出为固定的形状;若输入shape可变,如[None,3,None,None],则表示模型接受不同尺寸的输入。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接将以下脚本onnx模型路径 onnx_path 修改即可:

from pprint import pprint
import onnxruntime

onnx_path = "originalpool/output.onnx"
# onnx_path = "custompool/output.onnx"

provider = "CPUExecutionProvider"
onnx_session = onnxruntime.InferenceSession(onnx_path, providers=[provider])

print("----------------- 输入部分 -----------------")
input_tensors = onnx_session.get_inputs()  # 该 API 会返回列表
for input_tensor in input_tensors:         # 因为可能有多个输入,所以为列表
    
    input_info = {
        "name" : input_tensor.name,
        "type" : input_tensor.type,
        "shape": input_tensor.shape,
    }
    pprint(input_info)

print("----------------- 输出部分 -----------------")
output_tensors = onnx_session.get_outputs()  # 该 API 会返回列表
for output_tensor in output_tensors:         # 因为可能有多个输出,所以为列表
    
    output_info = {
        "name" : output_tensor.name,
        "type" : output_tensor.type,
        "shape": output_tensor.shape,
    }
    pprint(output_info)

值得说明的是,如果onnx模型的输入shape是固定的,该脚本的输出是:

'----------------- 输入部分 -----------------'
{'name': 'x', 
 'shape': [1, 3, 224, 224], 
 'type': 'tensor(float)'}
'----------------- 输出部分 -----------------'
{'name': 'bilinear_interp_v2_7.tmp_0',
 'shape': [1, 2, 224, 224],
 'type': 'tensor(float)'}

值得说明的是,如果onnx模型的输入shape是非固定的,该脚本的输出是:

----------------- 输入部分 -----------------
{'name': 'x', 
 'shape': [None, 3, None, None], 
 'type': 'tensor(float)'}
----------------- 输出部分 -----------------
{'name': 'bilinear_interp_v2_7.tmp_0',
 'shape': [None, 2, None, None],
 'type': 'tensor(float)'}

shape 中有 None

### ONNX到NCNN模型转换的Python脚本 为了实现ONNX模型向NCNN模型的转换,通常需要借助工具链中的特定命令行工具或库函数来完成此过程。对于Python环境而言,虽然官方推荐的方式多基于C++接口,但仍可以通过调用外部程序的方法间接达成目标。 下面是一个简单的例子,展示如何编写一个Python脚本来执行这一操作: ```python import os import subprocess def onnx_to_ncnn(onnx_model_path, param_file, bin_file): """ 将指定路径下的ONNX模型文件转换成NCNN支持的param和bin格式 参数: onnx_model_path (str): 输入的.onnx模型绝对路径. param_file (str): 输出的.param参数文件名(含路径). bin_file (str): 输出的.bin权重文件名(含路径). 返回值: None 或 错误信息字符串. """ try: # 构建ncnnoptimize命令并运行 command = f'./build/tools/onnx/onnxtomodel {onnx_model_path} {param_file} {bin_file}' result = subprocess.run(command.split(), check=True) if result.returncode != 0: raise Exception(f"Error occurred while converting model: Return code was not zero ({result.returncode})") print("Model successfully converted.") except FileNotFoundError as e: return str(e) except subprocess.CalledProcessError as e: return "An error occurred during the conversion process." # 使用示例 if __name__ == '__main__': status = onnx_to_ncnn('path/to/model.onnx', 'output_param_file.param', 'output_bin_file.bin') if isinstance(status, str): print(f"Conversion failed with message: {status}") ``` 上述代码片段展示了通过`subprocess`模块调用预编译好的`onnxtomodel`工具来进行实际转换工作[^1]。需要注意的是,在真实环境中应用这段代码之前,应该确保已经安装好了最新的NCNN源码及其依赖项,并且能够成功构建出所需的二进制可执行文件。 此外,由于该方法涉及到了操作系统级别的指令调用,因此可能需要根据具体平台调整相应的路径设置以及权限配置等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值