将PointNet训练好的pth模型转换为onnx模型,并基于C++的onnxruntime框架推理部署

1.pth模型转onnx模型

1.1将要转换的pth模型放到models目录下

在这里插入图片描述

1.2新建模型转换的脚本文件export.py

from models import pointnet2_cls_ssg
import os
import sys
import torch
import argparse

BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models', 'log'))

def parse_args():
    '''PARAMETERS'''
    parser = argparse.ArgumentParser('Testing')
    parser.add_argument('--use_cpu', action='store_true', default=True, help='use cpu mode')
    parser.add_argument('--model', default='pointnet2_cls_ssg',help='model name [default: pointnet_cls]')  # pointnet2_cls_ssg/pointnet_cls
    parser.add_argument('--num_category', default=3, type=int, choices=[2, 3, 10, 40],help='training on ModelNet10/40')
    parser.add_argument('--num_point', type=int, default=1024, help='Point Number')
    parser.add_argument('--use_normals', action='store_true', default=False, help='use normals')
    return parser.parse_args()

args = parse_args()
point_num = args.num_point
class_num = args.num_category
normal_channel = args.use_normals

model = pointnet2_cls_ssg.get_model(class_num, normal_channel)
if not args.use_cpu:
    model = model.cuda()
model.eval()
if not args.use_cpu:
    checkpoint = torch.load('best_model.pth')
else:
    checkpoint = torch.load('best_model.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])

x = (torch.rand(1, 6, point_num) if normal_channel else torch.rand(1, 3, point_num))
if not args.use_cpu:
    x = x.cuda()

traced_script_module = torch.jit.trace(model, x)
export_onnx_file = "cls.onnx"
torch.onnx.export(traced_script_module, x, export_onnx_file, opset_version=11)
# traced_script_module.save("cls.pt")

1.3修改pointnet2_utils.py

为了torch.onnx.export(traced_script_module, x, export_onnx_file, opset_version=11)函数正常执行,需要对pointnet2_utils.py文件进行修改。修改后的代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
from time import time
import numpy as np


def timeit(tag, t):
    print("{}: {}s".format(tag, time() - t))
    return time()


def pc_normalize(pc):
    l = pc.shape[0]
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
    pc = pc / m
    return pc


def square_distance(src, dst):
    """
    Calculate Euclid distance between each two points.

    src^T * dst = xn * xm + yn * ym + zn * zm;
    sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
    sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
    dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
         = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst

    Input:
        src: source points, [B, N, C]
        dst: target points, [B, M, C]
    Output:
        dist: per-point square distance, [B, N, M]
    """
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
    dist += torch.sum(src ** 2, -1).view(B, N, 1)
    dist += torch.sum(dst ** 2, -1).view(B, 1, M)
    return dist


def index_points(points, idx):
    """

    Input:
        points: input points data, [B, N, C]
        idx: sample index data, [B, S]
    Return:
        new_points:, indexed points data, [B, S, C]
    """
    device = points.device
    B = points.shape[0]
    view_shape = list(idx.shape)
    # view_shape[1:] = [1] * (len(view_shape) - 1)
    new_view_shape = [view_shape[0]] + [1] * (len(view_shape) - 1)
    view_shape = new_view_shape

    repeat_shape = list(idx.shape)
    repeat_shape[0] = 1
    batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
    new_points = points[batch_indices, idx, :]
    return new_points


def farthest_point_sample(xyz, npoint: int):
    """
    Input:
        xyz: pointcloud data, [B, N, 3]
        npoint: number of samples
    Return:
        centroids: sampled pointcloud index, [B, npoint]
    """
    device = xyz.device
    B, N, C = xyz.shape
    centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)  # 采样点矩阵(B, npoint)
    distance = torch.ones(B, N).to(device) * 1e10  # 采样点到所有点距离(B, N)
    farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)  # 最远点,初试时随机选择一点点
    batch_indices = torch.arange(B, dtype=torch.long).to(device)  # batch_size 数组

    for i in range(int(npoint)):
        centroids[:, i] = farthest  # 更新第i个最远点
        centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)  # 取出这个最远点的xyz坐标
        dist = torch.sum((xyz - centroid) ** 2, -1)  # 计算点集中的所有点到这个最远点的欧式距离
        mask = dist < distance
        distance[mask] = dist[mask]  # 更新distances,记录样本中每个点距离所有已出现的采样点的最小距离
        farthest = torch.max(distance, -1)[1]  # 返回最远点索引
    return centroids


def query_ball_point(radius: float, nsample: int, xyz, new_xyz):
    """
    Input:
        radius: local region radius
        nsample: max sample number in local region
        xyz: all points, [B, N, 3]
        new_xyz: query points, [B, S, 3]
    Return:
        group_idx: grouped points index, [B, S, nsample]
    """
    device = xyz.device
    B, N, C = xyz.shape
    _, S, _ = new_xyz.shape
    group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
    sqrdists = square_distance(new_xyz, xyz)
    group_idx[sqrdists > radius ** 2] = N
    group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
    group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
    mask = group_idx == N
    group_idx[mask] = group_first[mask]
    return group_idx


# def sample_and_group(npoint, radius, nsample, xyz, points, returnfps):
def sample_and_group(npoint, radius, nsample, xyz, points):
    """
    Input:
        npoint:
        radius:
        nsample:
        xyz: input points position data, [B, N, 3]
        points: input points data, [B, N, D]
    Return:
        new_xyz: sampled points position data, [B, npoint, nsample, 3]
        new_points: sampled points data, [B, npoint, nsample, 3+D]
    """
    B, N, C = xyz.shape
    S = npoint
    fps_idx = farthest_point_sample(xyz, npoint)  # [B, npoint, C]
    new_xyz = index_points(xyz, fps_idx)
    idx = query_ball_point(radius, nsample, xyz, new_xyz)
    grouped_xyz = index_points(xyz, idx)  # [B, npoint, nsample, C]
    grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C)

    if points is not None:
        grouped_points = index_points(points, idx)
        new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1)  # [B, npoint, nsample, C+D]
    else:
        new_points = grouped_xyz_norm
    # if returnfps:
    #     return new_xyz, new_points, grouped_xyz, fps_idx
    # else:
    return new_xyz, new_points


def sample_and_group_all(xyz, points):
    """
    Input:
        xyz: input points position data, [B, N, 3]
        points: input points data, [B, N, D]
    Return:
        new_xyz: sampled points position data, [B, 1, 3]
        new_points: sampled points data, [B, 1, N, 3+D]
    """
    device = xyz.device
    B, N, C = xyz.shape
    new_xyz = torch.zeros(B, 1, C).to(device)
    grouped_xyz = xyz.view(B, 1, N, C)
    if points is not None:
        new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1)
    else:
        new_points = grouped_xyz
    return new_xyz, new_points


class PointNetSetAbstraction(nn.Module):
    def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all):
        super(PointNetSetAbstraction, self).__init__()
        self.npoint = npoint
        self.radius = radius
        self.nsample = nsample
        self.mlp_convs = nn.ModuleList()
        self.mlp_bns = nn.ModuleList()
        last_channel = in_channel
        for out_channel in mlp:
            self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1))
            self.mlp_bns.append(nn.BatchNorm2d(out_channel))
            last_channel = out_channel
        self.group_all = group_all

    def forward(self, xyz, points):
        """
        Input:
            xyz: input points position data, [B, C, N]
            points: input points data, [B, D, N]
        Return:
            new_xyz: sampled points position data, [B, C, S]
            new_points_concat: sample points feature data, [B, D', S]
        """
        xyz = xyz.permute(0, 2, 1)
        if points is not None:
            points = points.permute(0, 2, 1)

        if self.group_all:
            new_xyz, new_points = sample_and_group_all(xyz, points)
        else:
            new_xyz, new_points = sample_and_group_all(xyz, points)
            # new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points)
        # new_xyz: sampled points position data, [B, npoint, C]
        # new_points: sampled points data, [B, npoint, nsample, C+D]
        new_points = new_points.permute(0, 3, 2, 1)  # [B, C+D, nsample,npoint]
        for i, (conv, bn) in enumerate(zip(self.mlp_convs, self.mlp_bns)):
            new_points = F.relu(bn(conv(new_points)))

        new_points = torch.max(new_points, 2)[0]
        new_xyz = new_xyz.permute(0, 2, 1)
        return new_xyz, new_points


class PointNetSetAbstractionMsg(nn.Module):
    def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list):
        super(PointNetSetAbstractionMsg, self).__init__()
        self.npoint = npoint
        self.radius_list = radius_list
        self.nsample_list = nsample_list
        self.conv_blocks = nn.ModuleList()
        self.bn_blocks = nn.ModuleList()
        for i in range(len(mlp_list)):
            convs = nn.ModuleList()
            bns = nn.ModuleList()
            last_channel = in_channel + 3
            for out_channel in mlp_list[i]:
                convs.append(nn.Conv2d(last_channel, out_channel, 1))
                bns.append(nn.BatchNorm2d(out_channel))
                last_channel = out_channel
            self.conv_blocks.append(convs)
            self.bn_blocks.append(bns)

    def forward(self, xyz, points):
        """
        Input:
            xyz: input points position data, [B, C, N]
            points: input points data, [B, D, N]
        Return:
            new_xyz: sampled points position data, [B, C, S]
            new_points_concat: sample points feature data, [B, D', S]
        """
        xyz = xyz.permute(0, 2, 1)
        if points is not None:
            points = points.permute(0, 2, 1)

        B, N, C = xyz.shape
        S = self.npoint
        new_xyz = index_points(xyz, farthest_point_sample(xyz, S))
        new_points_list = []
        for i, (convs, bns) in enumerate(zip(self.conv_blocks, self.bn_blocks)):
            K = self.nsample_list[i]
            radius = self.radius_list[i]
            group_idx = query_ball_point(radius, K, xyz, new_xyz)
            grouped_xyz = index_points(xyz, group_idx)
            grouped_xyz -= new_xyz.view(B, S, 1, C)
            if points is not None:
                grouped_points = index_points(points, group_idx)
                grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1)
            else:
                grouped_points = grouped_xyz

            grouped_points = grouped_points.permute(0, 3, 2, 1)  # [B, D, K, S]
            # for j in range(len(self.conv_blocks[i])):
            #     conv = self.conv_blocks[i][j]
            #     bn = self.bn_blocks[i][j]
            #     grouped_points =  F.relu(bn(conv(grouped_points)))

            for j, (conv, bn) in enumerate(zip(convs, bns)):
                 grouped_points =  F.relu(bn(conv(grouped_points)))

            new_points = torch.max(grouped_points, 2)[0]  # [B, D', S]
            new_points_list.append(new_points)

        new_xyz = new_xyz.permute(0, 2, 1)
        new_points_concat = torch.cat(new_points_list, dim=1)
        return new_xyz, new_points_concat


class PointNetFeaturePropagation(nn.Module):
    def __init__(self, in_channel, mlp):
        super(PointNetFeaturePropagation, self).__init__()
        self.mlp_convs = nn.ModuleList()
        self.mlp_bns = nn.ModuleList()
        last_channel = in_channel
        for out_channel in mlp:
            self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1))
            self.mlp_bns.append(nn.BatchNorm1d(out_channel))
            last_channel = out_channel

    def forward(self, xyz1, xyz2, points1, points2):
        """
        Input:
            xyz1: input points position data, [B, C, N]
            xyz2: sampled input points position data, [B, C, S]
            points1: input points data, [B, D, N]
            points2: input points data, [B, D, S]
        Return:
            new_points: upsampled points data, [B, D', N]
        """
        xyz1 = xyz1.permute(0, 2, 1)
        xyz2 = xyz2.permute(0, 2, 1)

        points2 = points2.permute(0, 2, 1)
        B, N, C = xyz1.shape
        _, S, _ = xyz2.shape

        if S == 1:
            interpolated_points = points2.repeat(1, N, 1)
        else:
            dists = square_distance(xyz1, xyz2)
            dists, idx = dists.sort(dim=-1)
            dists, idx = dists[:, :, :3], idx[:, :, :3]  # [B, N, 3]

            dist_recip = 1.0 / (dists + 1e-8)
            norm = torch.sum(dist_recip, dim=2, keepdim=True)
            weight = dist_recip / norm
            interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2)

        if points1 is not None:
            points1 = points1.permute(0, 2, 1)
            new_points = torch.cat([points1, interpolated_points], dim=-1)
        else:
            new_points = interpolated_points

        new_points = new_points.permute(0, 2, 1)
        for i, (conv, bn) in enumerate(zip(self.mlp_convs, self.mlp_bns)):
            new_points = F.relu(bn(conv(new_points)))
        return new_points

1.4测试导出的onnx模型

在models目录中新建oonxtest.py,代码如下:

import onnxruntime as ort
import numpy as np
import onnx

model = onnx.load('cls.onnx')
#输入层
input_nodes = model.graph.input
for input_node in input_nodes:
       print(input_node.name)
#输出层
output_nodes = model.graph.output
for output_node in output_nodes:
       print(output_node.name)
#测试onnx模型       
onnx.checker.check_model(model)

# ort_session = ort.InferenceSession('cls.onnx')
# outputs = ort_session.run(None, {'xyz.1': np.random.randn(10, 20), 'input_mask': np.random.randn(1, 20, 5)})
# 由于设置了dynamic_axes,支持对应维度的变化
# outputs = ort_session.run(None, {'input': np.random.randn(10, 5), 'input_mask': np.random.randn(1, 26, 2)})
# outputs 为 包含'output'和'output_mask'的list

程序没报错就是onnx模型可用,记录下输入层和输出层的名称,后续C++加载推理模型会用到

参考文章:
pointnet C++推理部署–onnxruntime框架
Pointnet++在Pytorch下模型(.pth)转Libtorch下模型(.pt)

2.下载搭建onnxruntime框架

2.1onnx模型介绍

ONNX(Open Neural Network Exchange)是由微软、Facebook和亚马逊等公司合作推出的用于机器学习模型的开放式框架。它的目的是让不同的深度学习框架之间可以无缝地交换模型。

ONNX从模型的角度出发,提供了通用的表示方法,使得不同深度学习框架可以将自己的模型导出到ONNX格式,而其他深度学习框架则可以将ONNX格式的模型导入,并在自己的框架中运行。

ONNX支持的深度学习框架包括PyTorch、TensorFlow、Caffe2、MXNet等。通过使用ONNX,深度学习从业者可以更加灵活地选择使用不同的框架,同时也可以更加方便地将模型部署到不同的硬件设备上。

2.2下载解压

根据Windows或Linux系统、是否使用显卡、以及导出的onnx版本选择要下载的onnxruntime版本
onnxruntime官方下载地址:https://github.com/microsoft/onnxruntime/releases
本次实验在无显卡的Windows系统上进行的,选择对应版本进行下载
在这里插入图片描述
参考文章:ONNX:C++通过onnxruntime使用.onnx模型进行前向计算【下载的onnxruntime是编译好的库文件,可直接使用】

3.C++推理onnx模型

3.1创建项目

将下载的onnxruntime放到项目目录中,新建include和src目录,将所需模型和点云文件放到src目录下
在这里插入图片描述

3.2新建loadonnx.h

loadonnx.h代码如下:

#pragma once
#include <vector>

void pc_normalize(std::vector<float>& points);
int classfier(std::vector<float>& points);
const int point_num = 1024;
const int class_num = 3;

可以根据自己项目更改类别数目

3.3新建loadonnx.cpp

loadonnx.cpp代码如下:

#pragma once
#include <iostream>
#include <vector>
#include <fstream>
#include <onnxruntime_cxx_api.h>
#include <cmath>
#include <math.h>
#include <algorithm>
#include "loadonnx.h"


//const int point_num = 1024;
//const int class_num = 3;


void pc_normalize(std::vector<float>& points)
{
	float mean_x = 0, mean_y = 0, mean_z = 0;
	for (size_t i = 0; i < point_num; ++i)
	{
		mean_x += points[3 * i];
		mean_y += points[3 * i + 1];
		mean_z += points[3 * i + 2];
	}
	mean_x /= point_num;
	mean_y /= point_num;
	mean_z /= point_num;

	for (size_t i = 0; i < point_num; ++i)
	{
		points[3 * i] -= mean_x;
		points[3 * i + 1] -= mean_y;
		points[3 * i + 2] -= mean_z;
	}

	float m = 0;
	for (size_t i = 0; i < point_num; ++i)
	{
		if (sqrt(pow(points[3 * i], 2) + pow(points[3 * i + 1], 2) + pow(points[3 * i + 2], 2)) > m)
			m = sqrt(pow(points[3 * i], 2) + pow(points[3 * i + 1], 2) + pow(points[3 * i + 2], 2));
	}

	for (size_t i = 0; i < point_num; ++i)
	{
		points[3 * i] /= m;
		points[3 * i + 1] /= m;
		points[3 * i + 2] /= m;
	}
}


int classfier(std::vector<float>& points)
{
	Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "cls");
	Ort::SessionOptions session_options;
	session_options.SetIntraOpNumThreads(1);
	session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);

	//OrtCUDAProviderOptions cuda_option;
	//cuda_option.device_id = 0;
	//cuda_option.arena_extend_strategy = 0;
	//cuda_option.cudnn_conv_algo_search = OrtCudnnConvAlgoSearchExhaustive;
	//cuda_option.gpu_mem_limit = SIZE_MAX;
	//cuda_option.do_copy_in_default_stream = 1;
	//session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
	//session_options.AppendExecutionProvider_CUDA(cuda_option);

	const wchar_t* model_path = L"cls.onnx";
	Ort::Session session(env, model_path, session_options);
	Ort::AllocatorWithDefaultOptions allocator;

	size_t num_input_nodes = session.GetInputCount();

	std::vector<const char*> input_node_names = { "xyz.1" };
	std::vector<const char*> output_node_names = { "163","l3_points" };

	const size_t input_tensor_size = 1 * 3 * point_num;
	std::vector<float> input_tensor_values(input_tensor_size);
	for (size_t i = 0; i < 3; i++)
	{
		for (size_t j = 0; j < point_num; j++)
		{
			input_tensor_values[point_num * i + j] = points[3 * j + i];
		}
	}

	std::vector<int64_t> input_node_dims = { 1, 3, point_num };
	auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
	Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), input_node_dims.size());

	std::vector<Ort::Value> ort_inputs;
	ort_inputs.push_back(std::move(input_tensor));

	std::vector<Ort::Value> output_tensors = session.Run(Ort::RunOptions{ nullptr }, input_node_names.data(), ort_inputs.data(), input_node_names.size(), output_node_names.data(), output_node_names.size());

	const float* rawOutput = output_tensors[0].GetTensorData<float>();
	std::vector<int64_t> outputShape = output_tensors[0].GetTensorTypeAndShapeInfo().GetShape();
	size_t count = output_tensors[0].GetTensorTypeAndShapeInfo().GetElementCount();
	std::vector<float> output(rawOutput, rawOutput + count);

	int predict_label = std::max_element(output.begin(), output.end()) - output.begin();
	//std::cout << predict_label << std::endl;
	return predict_label;
}


//int main()
//{
//	std::vector<float> points;
//	float x, y, z, nx, ny, nz;
//	char ch;
//	std::ifstream infile("close_0006.txt");
//	for (size_t i = 0; i < point_num; i++)
//	{
//		infile >> x >> ch >> y >> ch >> z >> ch >> nx >> ch >> ny >> ch >> nz;
//		points.push_back(x);
//		points.push_back(y);
//		points.push_back(z);
//	}
//	infile.close();
//	pc_normalize(points);
//	classfier(points);
//	return 0;
//}

可以根据自己项目修改输入层名称和输出层名称

3.4新建main.cpp

main.cpp代码如下:

#include <iostream>
#include <vector>
#include <fstream>
#include "loadonnx.h"

int main()
{
    std::vector<float> points;
    float x, y, z, nx, ny, nz;
    char ch;
    int res;
    std::ifstream infile("close_0006.txt");
    for (size_t i = 0; i < point_num; i++)
    {
        infile >> x >> ch >> y >> ch >> z >> ch >> nx >> ch >> ny >> ch >> nz;
        points.push_back(x);
        points.push_back(y);
        points.push_back(z);
    }
    infile.close();

    pc_normalize(points);

    res=classfier(points);

    std::cout << res << std::endl;

    return 0;
}

可以根据自己项目调整输入的点云文件

3.5新建CMakeLists.txt

CMakeLists.txt内容如下:

cmake_minimum_required(VERSION 3.12)

project(loadonnx)

set(CMAKE_CXX_STANDARD 11)

if(NOT ONNXRUNTIME_ROOTDIR)
  if(WIN32)
    set(ONNXRUNTIME_ROOTDIR "${CMAKE_SOURCE_DIR}/onnxruntime")
else()
    set(ONNXRUNTIME_ROOTDIR "/usr/local")
  endif()
endif()

# 添加ONNX Runtime库头文件的包含路径
include_directories("${ONNXRUNTIME_ROOTDIR}/include")
include_directories("${CMAKE_SOURCE_DIR}/include")
# 添加ONNX Runtime库的链接路径
link_directories("${ONNXRUNTIME_ROOTDIR}/lib")
# 添加ONNX Runtime库的链接库
LINK_LIBRARIES("${ONNXRUNTIME_ROOTDIR}/lib/onnxruntime.lib")

# 添加可执行文件
add_executable(loadonnx "src/loadonnx.cpp" "src/main.cpp")

# 将以.dll结尾的文件复制到生成的debug目录下
 file(GLOB DLLS_FILES "onnxruntime/lib/*.dll")
 file(COPY ${DLLS_FILES} DESTINATION ${CMAKE_BINARY_DIR})

# 将以.onnx结尾的文件复制到生成的debug目录下
file(GLOB ONNX_FILES "src/*.onnx")
file(COPY ${ONNX_FILES} DESTINATION ${CMAKE_BINARY_DIR})

3.6运行项目

(1)点击CMakeLists.txt,按ctrl+s保存文件,同时会构建项目,生成out\build\x64-Debug目录
(2)构建成功后,点击生成exe可执行文件
在这里插入图片描述
(3)运行main.cpp程序,输出点云文件所属类别
在这里插入图片描述
在这里插入图片描述
参考文章:
pointnet C++推理部署–onnxruntime框架
c++动态库之一 安装onnx

4.采用其他模型框架推理(libtorch框架、OpenVINO框架)

C++基于OpenVINO框架推理IR模型

C++基于Libtorch框架推理pt模型

pointnet C++推理部署–libtorch框架

C++使用python训练的模型–libtorch框架

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 14
    评论
使用mmdeploy可以将mmdetection模型转换onnx格式,让模型在不同的平台和框架之间进行转换和迁移。同时,mmdeploy-sdk可以使用c语言进行实现,可以将onnx格式的模型部署到C/C++环境中。 要使用mmdeploy将mmdetection模型转换onnx,首先需要安装mmcv-full和mmdetection。安装完成后,使用以下命令将模型转换onnx: ``` python tools/deploy/export_onnx.py ${CONFIG_FILE} ${CHECKPOINT_FILE} ${ONNX_FILE} --input-img ${IMG_SHAPE} ``` 其中${CONFIG_FILE}为模型的配置文件,${CHECKPOINT_FILE}为训练好的模型文件,${ONNX_FILE}为生成的onnx文件名称,${IMG_SHAPE}为输入图像的形状。 转换onnx后,可以使用mmdeploy-sdk对模型进行部署。首先需要在C环境下使用mmdeploy-sdk的API读取onnx模型文件,然后使用C语言的库函数对模型进行推理。 使用mmdeploy-sdk的API读取onnx模型文件,代码如下: ``` #include <stdlib.h> #include <string.h> #include <assert.h> #include "mmdeploy.h" int main(int argc, char **argv) { flexbuffer *model; mmsession *session; const char *model_path = argv[1]; /* 读取onnx模型文件 */ model = read_flexbuffer_file(model_path); assert(model); /* 创建session */ session = create_session(model); assert(session); /* 设置输入数据 */ set_input_data(session, input_data); /* 进行推理,获取输出数据 */ get_output_data(session, output_data); return 0; } ``` 使用C语言的库函数对模型进行推理,主要的工作是对输入数据进行预处理,并调用session的run方法进行推理,代码如下: ``` #include <stdlib.h> #include <string.h> #include <assert.h> #include "mmdeploy.h" int main(int argc, char **argv) { flexbuffer *model; mmsession *session; float *input_buf, *output_buf; /* 预处理输入数据 */ input_buf = preprocess_input(input_data); /* 读取onnx模型文件 */ model = read_flexbuffer_file(argv[1]); assert(model); /* 创建session */ session = create_session(model); assert(session); /* 设置输入数据 */ set_input_data(session, input_data); /* 进行推理,获取输出数据 */ get_output_data(session, output_data); /* 对输出数据进行后处理 */ output_buf = postprocess_output(output_data); return 0; } ``` 在使用mmdeploy-sdk进行C语言实现时,需要注意模型的输入和输出数据类型和形状,以及预处理和后处理函数的编写。通过以上步骤,就可以使用mmdeploy将mmdetection模型转换onnx,并使用mmdeploy-sdk实现C语言部署

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

funfan0517

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值