【高光谱一】2022 TGRS Confident Learning-Based Domain Adaptation for Hyperspectral Image Classification

本文提出了一种新的CLDA方法,结合领域自适应和置信学习解决跨域高光谱图像分类问题。通过选择高置信度目标样本,减少噪声并提高神经网络的判别能力。实验表明,CLDA在多个数据集上优于现有方法。
摘要由CSDN通过智能技术生成

1.motivation

跨域高光谱图像分类是遥感领域面临的主要挑战之一。为了获得更好的统计一致性,现有方法以无监督的方式使用整个未评估的目标数据,这可能会引入噪声并限制神经网络的可判别性。在本文中,提出了基于置信学习的领域自适应(CLDA)从数据操作的新角度来解决这个问题。为此,提出了一种新的框架,将领域自适应与置信学习相结合,前者减少域间差异并为目标实例生成伪标签,后者从中选择高置信度的目标样本。具体来说,置信学习部分根据给定的标签和预测概率对每个伪标记目标样本的置信度进行评估。然后,选择高置信度的目标样本作为训练数据,提高神经网络的判别能力。另外,交替训练领域适应部分和置信学习部分,逐步增加目标领域中高置信标签的比例,从而进一步提高分类的准确率。在4个数据集上的实验结果表明,所提出的CLDA方法优于目前最先进的领域自适应方法。

置信学习(CL)的方法,通过描述和识别数据集中的标签错误来关注标签质量。置信学习方法基于对噪声数据进行剪枝的原理,用概率阈值估计噪声,并对样本进行排序进行置信训练。在置信学习的启发下,根据目标数据的置信度对伪标签进行排序,去除有噪声的伪标签。

2.问题定义

本文采用了双分类器对抗域自适应和置信学习。在域自适应中,双分类器(C1和C2)输出两个概率向量p1和p2 (p1, p2∈RK ×1)来优化损失函数并更新神经网络,其中K为类别数。特征融合分类以双分类器的最后一层特征(在softmax之前)作为输入,选取两个特征之和的最大元素作为伪标签。由此得到所有目标实例的伪标签\hat{Y}=\left \{ \hat{y_{i}} \right \}_{i=1}^{n_{i}}。置信学习用于去除标记数据集上的噪声数据,并保留干净的数据用于模型训练。在置信学习中,采用SVM分类器估计预测概率\hat{P}=\left \{ \hat{p}_{ij} \right \}_{i,j=1}^{i=n_{i},j=K}。因此,每个目标样本都有一个伪标签和一个预测概率。这样就得到了置信联合矩阵C_{\hat{y},y^{t}}\in \mathbb{R}^{K\times K},并对C_{\hat{y},y^{t}}进行了归一化,可以得到联合分布矩阵Q_{\hat{y},y^{t}}\in \mathbb{R}^{K\times K}。其中,高置信度的伪标签称为置信标签,\hat{Y_{c}}=\left \{ \hat{y_{c_{i}}} \right \}_{i=1}^{n_{c}},其中,n_{c}为置信标签的个数,\hat{X}_{tc}=\left \{ x_{i}^{tc} \right \}_{i=1}^{n_{c}}为目标域的置信样本,类权值w_{confident\_class}\in \mathbb{R}^{K}用于更新神经网络时对实例进行加权。

3.method

从源域(蓝线)和目标域(橙色线),两个高光谱图像patch∈R5×5×ch, ch和5×5表示光谱波段和空间维度,分别输入特征提取器E .然后,特征提取的源和目标域(黑线)被送入两个分类器C1和C2,这两个分类器产生p1和p2,然后利用这些特征预测概率。使用p1和p2来输入损失函数,从而更新E、C1和C2。为了预测目标实例的伪标签Y,取C1和C2

  • 16
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值