Deep Learning - Theano.scan 对比理解

def test_fun(inputs, sa):
    return inputs + sa

sequences = T.arange(15)
print sequences.eval()
init_state = T.as_tensor_variable(numpy.asarray(1, sequences.dtype))
n_steps=15
al, updates = theano.scan(test_fun, sequences=sequences, outputs_info= init_state ,name="test_fun", n_steps=(n_steps))
#sequences = inputs, init_state = sa
print al.eval()

val = []
tmp = 1
for i in sequences.eval():
    tmp += i
    val.append(tmp) 
print val

运行结果为:

[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
[  1   2   4   7  11  16  22  29  37  46  56  67  79  92 106]
[1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106]

scan是theano提供的一个循环结构,因为这种函数式的变成方法,导致很难理解内部运行过程。本文把scan与普通的for循环进行对比,方便大家理解这个功能的运行。

sequence是输入数据

init_state是初始化数据

test_fun是将输入数据进行相加,返回结果

上图的两端代码中,i对应着n_steps,tmp对应init_state,val对应着al

即scan一次输入Sequence中的每个数,输入到test_fun中,与init_state进行相加,返回。返回的结果保存在init_state中,作为下一个循环的输入。

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值