如何简单易懂理解连续小波变换?(个人笔记)

声明:本文章笔记是此YouTube视频的个人总结:初学者的小波变换 - YouTube

一、如何简单易懂理解连续小波变换

1、为什么要使用小波变换:对非平稳信号,FFT无法定位故障频率的时间,即无法提供局部信号频率信息。因此出现了短时傅里叶变换(STFT),来克服FFT的这一缺陷,STFT使用固定长度的窗函数(可以理解为:用一个方框去扫描信号),沿着信号扫描,对其进行FFT。(如下图,扫描后得到三维图,比FFT多了时间的维度。)但是STFT还是存在缺点:窗函数是固定的(变换的过程中不能改变),导致信号的分辨率是固定的,不能清楚定位故障频率在具体什么时间,但相比FFT,我们可以知道某频率范围在什么时段存在。换句话说,STFT能定位故障时间段、频率范围,不能定位到具体的时间点、故障频率。为了能定位到具体某个的故障时间点和频率,小波变换诞生了。

原始信号与STFT处理后的结果

2、从公式上看FTT、STFT、小波变换(WT)的区别:(可以看出,STFT多了一个窗函数的变量τ,WT则将STFT的一块指数运算替换为小波函数

FTT、STFT公式:

小波变换(WT)公式:

3、小波变换如何定位具体的故障时间点和频率?

        可以简单理解为进行多个STFT,但是不是用窗函数按找一个范围逐个扫描使用FFT,而是使用小波函数进行扫描,并且用频率不同的小波函数对局部信号重复扫描,扫描的次数越多,分辨率越高,得到高分辨率的局部信号。(这个过程也被称作:将信号分解成不同尺度上的频率分量。)

不同的小波函数

使用不同的小波函数进行多次扫描

WT结果图

小波分解:重复对局部信号进行小波变换,获得分辨率更高的信号分量。

对原始信号进行多次小波分解后,通过合成低频率的信号分量,能起到信号降噪作用。

二、小波函数怎么选?(本人还不太懂)

YouTube视频:How to Choose a Right Wavelet and Wavelet Transform? (Understanding Wavelet's Properties) (youtube.com)

Mathworks:小波族 - MATLAB 和 Simulink (mathworks.com)

CSDN:有关小波的几个术语及常见的小波基介绍_sym4小波-CSDN博客

查看Python库中有哪些小波函数:python小波变换3-代码实现(pywt库,cwt-2D/3D时频图绘制,dwt-信号分解及重建)-CSDN博客

连续小波变换是小波分析中的一个重要概念,它通过将信号与一系列经过缩放和平移的小波基函数进行内积运算,从而将信号分解为时间-频率上的局部化表示。连续小波变换的关键优势在于它提供了一种分析信号的时频特性的方式,这在分析非平稳信号时尤其有用。在连续小波变换中,通过改变小波的缩放因子和位置参数,可以得到信号在不同尺度(频率)和时间点的局部特性。小波变换的时频分辨率可以通过选择不同的小波函数来调整,例如高斯小波、莫尔小波等。对比离散小波变换连续小波变换可以提供更精细的时频分辨率,但计算复杂度较高,且结果数据量较大。在实际应用中,连续小波变换更多用于理论分析和研究,而离散小波变换由于其计算效率和较好的去相关性,在信号压缩、图像处理等领域得到了广泛的应用。离散小波变换通常只在特定的尺度和位置进行采样,从而得到一组离散的小波系数,这组系数可以用来重构信号,或者用于信号的特征提取和分析。对于那些希望深入了解连续小波变换和离散小波变换的读者,推荐参考《小波理论入门指南 - 中文翻译版》,该资料为工程师提供了易懂的解释,并且详细地探讨了从基本概念到实际应用的多个方面,涵盖了连续小波变换、离散小波变换、带通滤波器等关键内容。 参考资源链接:[小波理论入门指南 - 中文翻译版](https://wenku.csdn.net/doc/7r6gjqh4bv)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值