C - TT 的美梦(Bellman-ford算法以及SPFA算法优化)

C - TT 的美梦

  • 题意:
    这一晚,TT 做了个美梦!
    在梦中,TT 的愿望成真了,他成为了喵星的统领!喵星上有 N 个商业城市,编号 1 ~ N,其中 1 号城市是 TT 所在的城市,即首都。
    喵星上共有 M 条有向道路供商业城市相互往来。但是随着喵星商业的日渐繁荣,有些道路变得非常拥挤。正在 TT 为之苦恼之时,他的魔法小猫咪提出了一个解决方案!TT 欣然接受并针对该方案颁布了一项新的政策。
    具体政策如下:对每一个商业城市标记一个正整数,表示其繁荣程度,当每一只喵沿道路从一个商业城市走到另一个商业城市时,TT 都会收取它们(目的地繁荣程度 - 出发地繁荣程度)^ 3 的税。
    TT 打算测试一下这项政策是否合理,因此他想知道从首都出发,走到其他城市至少要交多少的税,如果总金额小于 3 或者无法到达请悄咪咪地打出 ‘?’。

  • 输入输出:
    Input
    第一行输入 T,表明共有 T 组数据。(1 <= T <= 50)
    对于每一组数据,第一行输入 N,表示点的个数。(1 <= N <= 200)
    第二行输入 N 个整数,表示 1 ~ N 点的权值 a[i]。(0 <= a[i] <= 20)
    第三行输入 M,表示有向道路的条数。(0 <= M <= 100000)
    接下来 M 行,每行有两个整数 A B,表示存在一条 A 到 B 的有向道路。
    接下来给出一个整数 Q,表示询问个数。(0 <= Q <= 100000)
    每一次询问给出一个 P,表示求 1 号点到 P 号点的最少税费。
    Output
    每个询问输出一行,如果不可达或税费小于 3 则输出 ‘?’。
    在这里插入图片描述

  • 解题思路:
    本题需要求出有含有环的单源最短路,故dijkstra算法不再适用。需要使用Bellman−Ford算法。这里使用队列优化的SPFA算法。

    依然使用链式前向星存图,不再赘述。vis数组标记点是否在队列中,dis记录距离,num记录松弛次数,sq记录是否受负环影响

    先将起点到所有点的距离初始化为inf并将起点入队,当队列不为空时,每次取队首元素,将其pop出队并将vis值修改为0,同dijkstra一样开始对邻接点进行从松弛操作,松弛成功的点num+1,其邻接点如果不在队列中将它加入队列。因为题中可能存在负环,而不存在环的条件是边数一定少于点数。这里可以使用num来存每个点的松弛次数,当num[i]>n时则说明存在负环。因为与负环连通的所有点都会受负环影响,故可以从i点开始进行dfs,标记能到达的点

    最后输出需要判**断到达不了即dis值为inf的点,dis值小于3的点以及受负环影响sq被标记为1的点,**若满足以上条件输出“?”,其他情况输出该点的dis值。

  • 代码实现:

#include<iostream>
#include<queue>
#include<cstring>
#include<cmath>
#include<cstdio>
using namespace std;
const int MAXM=100010;
const int inf=200000000;
int n,m,t,tot,num[MAXM],a[MAXM],dis[MAXM],head[MAXM];
queue<int> q;
bool vis[MAXM],sq[MAXM];

struct node
{
	int to;
	int weight;
	int next;
}edge[MAXM];

void add_edge(int u,int v,int w)
{
	edge[tot].next=head[u];
	edge[tot].to=v;
	edge[tot].weight=w;
	head[u]=tot++;
}

void dfs(int u)
{
	for(int i=head[u];i;i=edge[i].next)
	if(!sq[edge[i].to])
	{
		sq[edge[i].to]=1;
		dfs(edge[i].to);
	}
}

void SPFA()
{
	for(int i=1;i<=n;i++)
	dis[i]=inf;
	dis[1]=0;
	q.push(1);
	vis[1]=1;
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		vis[u]=0;
		for(int i=head[u];i;i=edge[i].next)
		if(dis[edge[i].to]>dis[u]+edge[i].weight)
		{
			num[edge[i].to]++;
			dis[edge[i].to]=dis[u]+edge[i].weight;
			if(num[edge[i].to]>n) 
			{
				dfs(edge[i].to);
				continue ;
			}
			if(!vis[edge[i].to])
			{
				q.push(edge[i].to);
				vis[edge[i].to]=1;
			}
		}
	}
}

int main()
{
	int N,x,y,z;
	cin>>N;
	for(int nn=1;nn<=N;nn++)
	{
		tot=1;
		for (int i=0;i<MAXM;i++)
		{
			head[i]=0;
			num[i]=0;
			vis[i]=0;
			sq[i]=0;
		}
		cin>>n;
		for(int i=1;i<=n;i++)
		cin>>a[i];
		cin>>m;
		for(int i=1;i<=m;i++)
		{
			cin>>x>>y;
			add_edge(x,y,pow(a[y]-a[x],3));
		}
		SPFA();
		printf("Case %d:\n",nn);
		cin>>t;
		for(int i=1;i<=t;i++)
		{
			cin>>n;
			if(dis[n]<3||sq[n]||dis[n]==inf)
				cout<<"?"<<endl;
			else 
				cout<<dis[n]<<endl;
		}
	}
	return 0;
}
  • 关于Bellman—Ford和SPFA的补充:

    Floyed算法适用于求多源最短路经,时间复杂度为O(n3),dijkstra算法适用于求没有负权边的单源最短路,Bellman—Ford算法可以用于解决有负权边的单源最短路径。

    Bellman—Ford算法的基本思想是每次更新所有的边的距离,从而确定一个点的最短距离。当存在负环时最短路径是不存在的,判断负环是否存在可以判断是否存在边被松弛的次数大于n-1,因为如果没有负环n个点更新n-1次即可更新完毕,
    下面为核心代码:

//对图中每一条边进行松弛操作,松弛n-1轮。
for(int i=1; i<=n; ++i)
{
	dis[i]=inf;
	pre[i]=0;
}
dis[s]=0;
for(int k=1; k<n; ++k)
	for(int i=1; i<=m; ++i)
		if(dis[v[i]] > dis[u[i]] + w[i])
		{
			dis[v[i]]=dis[u[i] + w[i];
			pre[v[i]] = u[i];
		}
//判断是否存在负环
for(int i=1; i<=m; ++i)
{
	if(dis[v[i]] > dis[u[i]] +w[i]  //n-1轮松弛后依然存在能松弛的边
	{//存在负环}
}

显然该算法的时间复杂度为O(nm),m为边数。由于每一次松弛都要更新所有的边,使答案逐渐接近于最短路径,而实际上有许多松弛操作是多余的,因为只有在前一条边更新完成后下一条边的更新才是有效的,否则会造成有的边更新多次无效值,从而造成浪费。

为了解决这一问题引入了SPFA算法,基本思想是使用队列,将松弛成功的边加入队列,再去更新与这些边相邻的边的值。SPFA算法的平均时间复杂度为O(m),但极端情况下有可能和Bellman—Ford算法一样为O(nm)。 SPFA判断负环的方法为判断一个点的更新次数和点总数n的大小,可以放宽到比较入队次数和n的大小,如果入队次数大于n则一定存在负环。
核心代码如下:

forint i=1; i<=n; ++i)
{
	dis[i] = inf;//距离
	pre[i] = 0;//前驱节点
	inq[i] = 0;//标记是否在队列内
	cnt[i] = 0;//入队次数
}
dis[s] = 0;
inq[s] = 1;
q.push(s);
while(!q.empty())
{
	int u = q.front(); q.pop();
	inq[u] = 0;
	for(edge e:G[u])
	{
		int v = e.to;
		if(dis[v] > dis[u] + e.w;
		{
			cnt[v] = cnt[u] + 1; 
			if(cnt[v] >= n)   //松弛次数大于n
			{ //存在负环 }
			dis[v] = dis[u] + e.w;   //松弛成功
			pre[v] = u;
			if(!inq[v])
			{
				q.push(v);
				inq[v] = 1;
			}
		}
	}
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值