POJ 3070 Fibonacci【矩阵快速幂】

Fibonacci
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 17044 Accepted: 11902

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

#include<iostream>
using namespace std;
#define ll long long
const int mod = 10000;
ll Mod(ll x)
{
    return x % mod;
}
struct mat
{
    ll m[2][2];
}unit;
mat operator * (mat a, mat b)
{
    mat ans;
    ll x;
    for(int i = 0; i < 2; i++)
    {
        for(int j = 0; j < 2; j++)
        {
            x = 0;
            for(int k = 0; k < 2; k++)
                x += Mod(Mod(a.m[i][k]) * Mod(b.m[k][j]));
            ans.m[i][j] = Mod(x);
        }
    }
    return ans;
}
void init()
{
    for(int i = 0; i < 2; i++)
        for(int j = 0; j < 2; j++)
            if(i == j)
                unit.m[i][j] = 1;
            else
                unit.m[i][j] = 0;
    return;
}
mat Pow(mat a, ll b)
{
    mat ret = unit;
    while(b)
    {
        if(b & 1)
            ret = ret * a;
        a = a * a;
        b >>= 1;
    }
    return ret;
}
int main()
{
    ll n;
    while(cin >> n)
    {
        if(n == -1)
            break;
        init();
        mat mm, nn;
        mm.m[0][0] = mm.m[0][1] = mm.m[1][0] = 1;
        mm.m[1][1] = 0;
        nn = Pow(mm, n);
        cout << nn.m[0][1] << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值