【LeetCode】56. 合并区间(同NC37)

这篇博客详细介绍了如何解决LeetCode第56题——合并区间的问题。首先,通过排序合并的方法,解释了问题的解决思路,并提供了相应的代码实现,时间复杂度为O(nlogn)。接着,为了优化空间复杂度,采用指针移动的策略,同样实现了合并区间的功能。最后,给出了相关的参考资料。
摘要由CSDN通过智能技术生成

一、题目

以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间。

示例 1:

输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3][2,6] 重叠, 将它们合并为 [1,6].

示例 2:

输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4][4,5] 可被视为重叠区间。

提示:

  • 1 < = i n t e r v a l s . l e n g t h < = 1 0 4 1 <= intervals.length <= 10^4 1<=intervals.length<=104
  • i n t e r v a l s [ i ] . l e n g t h = = 2 intervals[i].length == 2 intervals[i].length==2
  • 0 < = s t a r t i < = e n d i < = 1 0 4 0 <= starti <= endi <= 10^4 0<=starti<=endi<=104

二、解决

1、排序合并

思路:

可以先看这个视频 + 文字详细讲解合并区间,搞清楚解决思路。

代码:

class Solution {
    public int[][] merge(int[][] intervals) {
        if (intervals.length == 0) {
            return new int[0][2];
        }
        Arrays.sort(intervals, new Comparator<int[]>() {
            public int compare(int[] interval1, int[] interval2) {
                return interval1[0] - interval2[0];
            }
        });
        List<int[]> merged = new ArrayList<int[]>();
        for (int i = 0; i < intervals.length; ++i) {
            int L = intervals[i][0], R = intervals[i][1];
            // 若合并数组为空 或 合并数组最大值 < 当前区间较小值--即没有交集
            if (merged.size() == 0 || merged.get(merged.size() - 1)[1] < L) {
                merged.add(new int[]{L, R});
            } else {
                merged.get(merged.size() - 1)[1] = Math.max(merged.get(merged.size() - 1)[1], R);
            }
        }
        return merged.toArray(new int[merged.size()][]);
    }
}

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( 2 n + l o g n ) O(2n+logn) O(2n+logn)

2、指针移动

思路: 同上,只是这里进行了空间优化。
代码:

class Solution {
    public int[][] merge(int[][] intervals) {
        // 先按照区间起始位置排序
        Arrays.sort(intervals, (v1, v2) -> v1[0] - v2[0]);
        // 遍历区间
        int[][] res = new int[intervals.length][2];
        int idx = -1;
        for (int[] interval: intervals) {
            // 如果结果数组是空的,或者当前区间的起始位置 > 结果数组中最后区间的终止位置,
            // 则不合并,直接将当前区间加入结果数组。
            if (idx == -1 || interval[0] > res[idx][1]) {
                res[++idx] = interval;
            } else {
                // 反之将当前区间合并至结果数组的最后区间
                res[idx][1] = Math.max(res[idx][1], interval[1]);
            }
        }
        return Arrays.copyOf(res, idx + 1);
    }
}
Arrays.copyOf():传回新数组对象,改变传回数组中元素值,不影响原数组。
                 第二个自变量是建立的新数组长度,超过原数组长度则保留数组默认值。

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( 2 n + 1 ) O(2n+1) O(2n+1)

三、参考

1、合并区间
2、吃🐳!🤷‍♀️竟然一眼秒懂合并区间!
3、Arrays.copyOf() 用法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值