一、题目
以数组 intervals
表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi]
。请你合并所有重叠的区间,并返回一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间。
示例 1:
输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:
输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
提示:
- 1 < = i n t e r v a l s . l e n g t h < = 1 0 4 1 <= intervals.length <= 10^4 1<=intervals.length<=104
- i n t e r v a l s [ i ] . l e n g t h = = 2 intervals[i].length == 2 intervals[i].length==2
- 0 < = s t a r t i < = e n d i < = 1 0 4 0 <= starti <= endi <= 10^4 0<=starti<=endi<=104
二、解决
1、排序合并
思路:
可以先看这个视频 + 文字详细讲解合并区间,搞清楚解决思路。
代码:
class Solution {
public int[][] merge(int[][] intervals) {
if (intervals.length == 0) {
return new int[0][2];
}
Arrays.sort(intervals, new Comparator<int[]>() {
public int compare(int[] interval1, int[] interval2) {
return interval1[0] - interval2[0];
}
});
List<int[]> merged = new ArrayList<int[]>();
for (int i = 0; i < intervals.length; ++i) {
int L = intervals[i][0], R = intervals[i][1];
// 若合并数组为空 或 合并数组最大值 < 当前区间较小值--即没有交集
if (merged.size() == 0 || merged.get(merged.size() - 1)[1] < L) {
merged.add(new int[]{L, R});
} else {
merged.get(merged.size() - 1)[1] = Math.max(merged.get(merged.size() - 1)[1], R);
}
}
return merged.toArray(new int[merged.size()][]);
}
}
时间复杂度:
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)
空间复杂度:
O
(
2
n
+
l
o
g
n
)
O(2n+logn)
O(2n+logn)
2、指针移动
思路: 同上,只是这里进行了空间优化。
代码:
class Solution {
public int[][] merge(int[][] intervals) {
// 先按照区间起始位置排序
Arrays.sort(intervals, (v1, v2) -> v1[0] - v2[0]);
// 遍历区间
int[][] res = new int[intervals.length][2];
int idx = -1;
for (int[] interval: intervals) {
// 如果结果数组是空的,或者当前区间的起始位置 > 结果数组中最后区间的终止位置,
// 则不合并,直接将当前区间加入结果数组。
if (idx == -1 || interval[0] > res[idx][1]) {
res[++idx] = interval;
} else {
// 反之将当前区间合并至结果数组的最后区间
res[idx][1] = Math.max(res[idx][1], interval[1]);
}
}
return Arrays.copyOf(res, idx + 1);
}
}
Arrays.copyOf():传回新数组对象,改变传回数组中元素值,不影响原数组。
第二个自变量是建立的新数组长度,超过原数组长度则保留数组默认值。
时间复杂度:
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)
空间复杂度:
O
(
2
n
+
1
)
O(2n+1)
O(2n+1)